/Accurate-WinCLIP-pytorch

Accurate reimplementation of WinCLIP (pytorch version)

Primary LanguagePythonMIT LicenseMIT

WinCLIP

This is an unofficial implementation of WinCLIP in AnomalyCLIP

The implementation of CLIP is based on open_clip

Updates

  • 03.20.2024: Update the 2-shot, 4-shot, and 8-shot results of VisA.
  • 08.08.2024: Update the visa.py to generate the JSON for VisA.

Performance evaluation

Few-shot

MVTec AD (1-shot)

objects auroc_px f1_px ap_px aupro auroc_sp f1_sp ap_sp
carpet 99.1 66.1 69.4 95.9 100 99.4 100
bottle 94.3 60.9 64.9 85.1 99.4 98.4 99.8
hazelnut 98.5 58.9 61.1 93.4 98 95.6 99
leather 99.2 45.4 39.3 97.8 100 99.5 100
cable 86.9 28.7 22.8 65 89.2 86.3 93.4
capsule 96.4 32.3 24.7 89.7 83.5 92.4 96.3
grid 94.1 28.7 19.1 82.1 99.6 99.1 99.9
pill 92.4 36.1 28.7 89.8 89.6 93.3 98
transistor 90 41.2 41.1 67.5 89.6 80.9 85.7
metal_nut 78.5 36.5 28.7 75.3 98.2 97.4 99.6
screw 95.9 23.5 14.4 84.5 81.5 86.8 93.1
toothbrush 96 33.6 26.3 82.8 91.4 90.6 96.6
zipper 97 46.5 40.8 90.5 86.4 90.3 95.8
tile 91.7 53.5 46.2 77.5 100 99.4 100
wood 94.5 56.4 59.4 84.5 99 96.8 99.7
mean 93.6 43.2 39.1 84.1 93.7 93.7 97.1

MVTec AD (2-shot)

objects auroc_px f1_px ap_px aupro auroc_sp f1_sp ap_sp
carpet 99 64.5 68.2 95.6 99.8 98.9 99.9
bottle 94.8 62.4 66.3 85.9 99.6 98.4 99.9
hazelnut 98.7 61.6 63.9 93.6 97.9 95.7 98.9
leather 99.2 45.2 39 97.9 99.9 99.5 100
cable 88.8 31.5 25.3 72.5 91 89.5 94
capsule 95.6 23.1 11.9 86.8 66 92.6 88.1
grid 94.8 30.3 20.7 83.9 99.4 99.1 99.8
pill 92.8 39.5 32.9 90.4 92.9 95.3 98.6
transistor 89.8 41 40.4 66.7 89.5 79.2 85.6
metal_nut 76.7 35.2 26.8 73.8 98.5 98.4 99.7
screw 96.7 25.6 18 87.5 82.9 86.9 93.5
toothbrush 96.4 36.6 29.9 82 93.3 92.1 97.6
zipper 97.2 50 43.9 91.1 95.2 94.8 98.7
tile 92 53.9 46.4 78 99.9 99.4 100
wood 94.5 56.2 58.5 86 99.5 98.3 99.8
mean 93.8 43.8 39.5 84.8 93.7 94.5 96.9

MVTec AD (4-shot)

objects auroc_px f1_px ap_px aupro auroc_sp f1_sp ap_sp
carpet 99 65.1 68.9 95.5 99.9 99.4 100
bottle 94.4 62.1 65.7 85.2 99.4 97.6 99.8
hazelnut 98.5 60.7 62.5 92.8 97.6 95 98.8
leather 99.3 45.4 39.3 97.8 100 100 100
cable 89 31.7 25.8 71.4 89.6 88.4 92.9
capsule 97.2 35.7 27.9 91.1 86.5 94 96.9
grid 95.1 30 22 84 99.7 98.2 99.9
pill 93 40.9 34.4 90.9 92.4 94.1 98.5
transistor 89.4 40.6 39.2 65.5 90.4 80.4 87.3
metal_nut 80.2 38 31.1 78 99.3 98.4 99.8
screw 96 22 15.1 85 81.4 89.1 91.6
toothbrush 98.2 55.1 50.8 88.6 98.1 96.7 99.3
zipper 97.4 51.3 46.2 91.2 95.5 94.8 98.8
tile 91.7 53.1 45.3 77.7 100 99.4 100
wood 94.5 56.6 59.3 86.6 99.3 97.5 99.8
mean 94.2 45.9 42.2 85.4 95.3 94.9 97.6

MVTec AD (8-shot)

objects auroc_px f1_px ap_px aupro auroc_sp f1_sp ap_sp
carpet 98.9 64.8 68.5 94.7 99.8 99.4 99.9
bottle 94.8 61.9 65.9 85.3 99.5 98.4 99.8
hazelnut 98.8 62.3 64.3 93.8 98.4 96.4 99.1
leather 99.2 44.8 38.2 97.4 100 100 100
cable 89.7 32.9 26.8 73.9 91.4 89.8 94
capsule 96.9 34.6 27 90.6 85.5 93.6 96.6
grid 95.6 31 23.6 85.9 99.6 99.1 99.9
pill 93.4 42.4 35.9 91.4 93.3 94.4 98.7
transistor 90.8 42.6 41.6 68.6 91.1 81.4 86.8
metal_nut 79.9 37.9 30.6 77.9 99.2 98.9 99.8
screw 96.8 17.9 12.4 86 80.4 88.8 91.1
toothbrush 98.3 55.4 51.8 89.4 98.9 96.7 99.6
zipper 97.4 51.2 45.5 91.6 97.6 96 99.4
tile 91.6 53 45 76.6 100 99.4 100
wood 94.8 56.1 59.2 87.3 99.6 98.4 99.9
mean 94.5 45.9 42.4 86 95.6 95.4 97.6

VisA (1-shot)

objects auroc_px f1_px ap_px aupro auroc_sp f1_sp ap_sp
candle 94.8 16.8 8 90.5 96.4 91 96.9
capsules 95.9 32.3 22.4 65.4 80.2 80.2 87.8
cashew 96.6 32.3 22.2 90.3 95.4 91.8 97.9
chewinggum 99 57 54.6 85.9 97.7 94.8 99
fryum 94.4 32.4 26 86 87.7 86.6 94.4
macaroni1 91.5 13 4 78.9 85.6 78.8 87.7
macaroni2 91.6 4 0.9 72.1 75.4 72.4 74.6
pcb1 96 16.1 7.3 76.8 85.6 83.7 84.5
pcb2 91.5 6.6 2.9 66.4 59.6 67.9 57
pcb3 92.9 13.4 7.6 77.6 68.9 71.2 68.9
pcb4 95.3 22.4 15.9 82.4 85.5 79 85.6
pipe_fryum 96.4 28 18.9 94.1 88 85.6 94.2
mean 94.7 22.9 15.9 80.5 83.8 81.9 85.7

VisA (2-shot)

objects auroc_px f1_px ap_px aupro auroc_sp f1_sp ap_sp
candle 95.5 18.2 8.7 91.2 96 90.9 96.7
capsules 95.8 31.8 22.5 65.4 82.4 83 89.8
cashew 96.9 34.2 24 89.1 93.4 89.4 97
chewinggum 99 57.4 56 86.5 98.2 95.9 99.2
fryum 95 35.5 27.9 86.1 84.7 84.8 92.7
macaroni1 93.8 13.4 4.5 83.8 88 81.5 89.6
macaroni2 91.4 3.7 0.8 70.2 73.3 72.6 73.4
pcb1 96.2 17 8.1 77.7 85.4 83.7 83.6
pcb2 92.1 7.1 3.2 65.9 58 69.2 57.7
pcb3 93.8 19.2 10.3 80.7 72 70.3 70.5
pcb4 95.9 21.9 14.1 84.1 79.3 80.7 70.1
pipe_fryum 96.2 28 18.7 93.9 89.7 87.9 95
mean 95.1 23.9 16.6 81.2 83.4 82.5 84.6

VisA (4-shot)

objects auroc_px f1_px ap_px aupro auroc_sp f1_sp ap_sp
candle 95.8 19.2 9.3 91.2 96.7 90.7 97.2
capsules 96.1 32.2 23.1 66.6 82.2 81.7 89.3
cashew 96.7 32.4 22.2 89.4 93.4 89.3 97
chewinggum 99 57.2 55.5 85.9 98 96.5 99.2
fryum 94.9 34.3 27.8 87.5 87.1 86.6 93.8
macaroni1 93.9 14.2 4.8 83.6 89.1 82.9 90.7
macaroni2 90 4.8 1 68.9 76 73.2 76.1
pcb1 96.2 16.9 8 77.1 86.8 84.2 84.2
pcb2 91.7 9.8 4.5 65.4 59.6 68.8 59.4
pcb3 94.6 23.3 13.2 81.1 69.9 70.7 68.7
pcb4 96.7 30.8 23.4 86.1 80.7 76.6 79.5
pipe_fryum 96.3 28.1 19.1 94.4 89.8 87.1 95
mean 95.2 25.3 17.7 81.4 84.1 82.4 85.8

VisA (8-shot)

objects auroc_px f1_px ap_px aupro auroc_sp f1_sp ap_sp
candle 95.9 19.2 9.4 91.1 96.9 91.5 97.3
capsules 96.2 32.2 23.2 66.9 82.6 83 89.3
cashew 96.9 34.2 24.4 89.5 95.6 92.2 98
chewinggum 99 56.7 54.5 85.8 97.9 96 99.1
fryum 95 35.4 28 88.2 89.7 86.7 95.3
macaroni1 93.9 13.7 4.7 82.9 89.6 82 90.8
macaroni2 89 3.8 0.6 68.3 76.7 73.5 76.1
pcb1 96.2 17 8.3 76.8 87.4 84.7 85.4
pcb2 92.5 10.8 4.9 66 63.7 70.1 61
pcb3 95.2 23.9 14.7 81.7 76.1 74.8 74
pcb4 97.2 33.5 25.8 88 84.6 81.8 83.1
pipe_fryum 96.5 29.3 19.7 94.3 91.2 89.3 95.7
mean 95.3 25.8 18.2 81.6 86 83.8 87.1

Zero-shot

objects auroc_px f1_px ap_px aupro auroc_sp f1_sp ap_sp
carpet 90.9 33.9 26 66.3 99.3 97.8 99.8
bottle 85.7 49.4 49.8 69.9 98.6 97.6 99.5
hazelnut 95.7 39.1 33.3 81.3 92.3 88.6 96
leather 95.5 30.8 20.5 86 100 100 100
cable 61.3 12.2 6.2 39.4 85 84.8 89.8
capsule 87 14.3 8.6 63.8 68.7 93.5 90.5
grid 79.4 13.7 5.7 49.3 99.2 98.2 99.7
pill 72.7 11.8 7 66.9 81.5 91.6 96.4
transistor 83.7 27 20.2 45.5 89.1 80 84.9
metal_nut 49.3 23.8 10.8 39.7 96.2 95.3 99.1
screw 91.1 11.3 5.4 70.2 71.7 85.9 87.7
toothbrush 86.2 10.5 5.5 67.9 85.3 88.9 94.5
zipper 91.7 27.8 19.4 72 91.2 93.4 97.5
tile 79.1 30.8 21.2 54.5 99.9 99.4 100
wood 85.1 35.4 32.9 56.3 97.6 95.2 99.3
mean 82.3 24.8 18.2 61.9 90.4 92.7 95.6

VisA

objects auroc_px f1_px ap_px aupro auroc_sp f1_sp ap_sp
candle 87 8.9 2.3 77.7 94.9 90.6 95.4
capsules 80 4.2 1.4 39.4 79.4 80.5 87.9
cashew 84.8 9.6 4.8 78.4 91.2 88.9 96
chewinggum 95.4 31.5 24 69.6 95.5 93.8 98.2
fryum 87.7 16.2 11.1 74.4 73.6 80 86.9
macaroni1 50.3 0.1 0 24.7 79 74.2 80
macaroni2 44.7 0.1 0 8 67.1 68.8 65.1
pcb1 38.7 0.9 0.4 20.7 72.1 70.2 73
pcb2 58.7 1.5 0.4 20.6 47 67.1 46.1
pcb3 76 2.1 0.7 43.7 63.9 67.6 63
pcb4 91.4 24.6 15.5 74.5 74.2 75.7 70.1
pipe_fryum 83.6 8.3 4.4 80.3 67.8 80.3 82.1
mean 73.2 9 5.4 51 75.5 78.2 78.7

Quick start

Zero-shot anomaly detection

bash zero_shot.sh

Few-shot anomaly detection

bash few_shot.sh

BibTex Citation

If you find this paper and repository useful, please cite our paper.

@article{zhou2024anomalyclip,
  title={AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection},
  author={Zhou, Qihang and Pang, Guansong and Tian, Yu and He, Shibo and Chen, Jiming},
  journal={The Twelfth International Conference on Learning Representations},
  year={2024}
}

@misc{jeong2023winclipzerofewshotanomalyclassification,
      title={WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation}, 
      author={Jongheon Jeong and Yang Zou and Taewan Kim and Dongqing Zhang and Avinash Ravichandran and Onkar Dabeer},
      year={2023},
      eprint={2303.14814},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2303.14814}, 
}