/stargan

Official PyTorch Implementation of StarGAN - CVPR 2018

Primary LanguagePythonMIT LicenseMIT

Running in Docker

To build a docker image with the necessary dependencies, dockerfile is provided. Build the image with the command nvidia-docker build -t car2car-pytorch ./

Default command to train on the CompCars dataset is provided in the train_command.sh. To run it inside docker execute the command

nvidia-docker run -ti --volume=$(pwd):<source root dir> \
-w <source root dir> -u $(id -u):$(id -g) car2car-pytorch:latest \ 
./train_command.sh

nvidia-docker run -ti --volume=$(pwd):/localhome/team07/stargan \
-w /localhome/team07/stargan -u $(id -u):$(id -g) car2car-pytorch:latest \
./train_command.sh

Paper

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Yunjey Choi 1,2, Minje Choi 1,2, Munyoung Kim 2,3, Jung-Woo Ha 2, Sung Kim 2,4, and Jaegul Choo 1,2    
1 Korea University, 2 Clova AI Research (NAVER Corp.), 3 The College of New Jersey, 4 HKUST
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (Oral)