How to use TensorLayer

While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLayer day to day.

Here are a summary of the tricks to use TensorLayer, you can also find more tricks in FQA.

If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

1. Installation

  • To keep your TL version and edit the source code easily, you can download the whole repository by excuting git clone https://github.com/zsdonghao/tensorlayer.git in your terminal, then copy the tensorlayer folder into your project
  • As TL is growing very fast, if you want to use pip install, we suggest you to install the master version
  • For NLP application, you will need to install NLTK and NLTK data

2. Interaction between TF and TL

3. Training/Testing switching

def mlp(x, is_train=True, reuse=False):
    with tf.variable_scope("MLP", reuse=reuse):
      tl.layers.set_name_reuse(reuse)
      net = InputLayer(x, name='in')
      net = DropoutLayer(net, 0.8, True, is_train, name='drop1')
      net = DenseLayer(net, n_units=800, act=tf.nn.relu, name='dense1')
      net = DropoutLayer(net, 0.8, True, is_train, name='drop2')
      net = DenseLayer(net, n_units=800, act=tf.nn.relu, name='dense2')
      net = DropoutLayer(net, 0.8, True, is_train, name='drop3')
      net = DenseLayer(net, n_units=10, act=tf.identity, name='out')
      logits = net.outputs
      net.outputs = tf.nn.sigmoid(net.outputs)
      return net, logits
x = tf.placeholder(tf.float32, shape=[None, 784], name='x')
y_ = tf.placeholder(tf.int64, shape=[None, ], name='y_')
net_train, logits = mlp(x, is_train=True, reuse=False)
net_test, _ = mlp(x, is_train=False, reuse=True)
cost = tl.cost.cross_entropy(logits, y_, name='cost')

4. Get variables and outputs

train_vars = tl.layers.get_variables_with_name('MLP', True, True)
train_op = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost, var_list=train_vars)
layers = tl.layers.get_layers_with_name(network, "MLP", True)
  • This method usually be used for activation regularization.

5. Pre-trained CNN and Resnet

6. Data augmentation

7. Batch of data

8. Customized layer

    1. Write a TL layer directly
    1. Use LambdaLayer, it can also accept functions with new variables. With this layer you can connect all third party TF libraries and your customized function to TL. Here is an example of using Keras and TL together.
import tensorflow as tf
import tensorlayer as tl
from keras.layers import *
from tensorlayer.layers import *
def my_fn(x):
    x = Dropout(0.8)(x)
    x = Dense(800, activation='relu')(x)
    x = Dropout(0.5)(x)
    x = Dense(800, activation='relu')(x)
    x = Dropout(0.5)(x)
    logits = Dense(10, activation='linear')(x)
    return logits

network = InputLayer(x, name='input')
network = LambdaLayer(network, my_fn, name='keras')
...

9. Sentences tokenization

>>> captions = ["one two , three", "four five five"] # 2个 句 子 
>>> processed_capts = []
>>> for c in captions:
>>>    c = tl.nlp.process_sentence(c, start_word="<S>", end_word="</S>")
>>>    processed_capts.append(c)
>>> print(processed_capts)
... [['<S>', 'one', 'two', ',', 'three', '</S>'],
... ['<S>', 'four', 'five', 'five', '</S>']]
>>> tl.nlp.create_vocab(processed_capts, word_counts_output_file='vocab.txt', min_word_count=1)
... [TL] Creating vocabulary.
... Total words: 8
... Words in vocabulary: 8
... Wrote vocabulary file: vocab.txt
  • Finally use tl.nlp.Vocabulary to create a vocabulary object from the txt vocabulary file created by tl.nlp.create_vocab
>>> vocab = tl.nlp.Vocabulary('vocab.txt', start_word="<S>", end_word="</S>", unk_word="<UNK>")
... INFO:tensorflow:Initializing vocabulary from file: vocab.txt
... [TL] Vocabulary from vocab.txt : <S> </S> <UNK>
... vocabulary with 10 words (includes start_word, end_word, unk_word)
...   start_id: 2
...   end_id: 3
...   unk_id: 9
...   pad_id: 0

Then you can map word to ID or vice verse as follow:

>>> vocab.id_to_word(2)
... 'one'
>>> vocab.word_to_id('one')
... 2
>>> vocab.id_to_word(100)
... '<UNK>'
>>> vocab.word_to_id('hahahaha')
... 9

10. Dynamic RNN and sequence length

  • Apply zero padding on a batch of tokenized sentences as follow:
>>> sequences = [[1,1,1,1,1],[2,2,2],[3,3]]
>>> sequences = tl.prepro.pad_sequences(sequences, maxlen=None, 
...         dtype='int32', padding='post', truncating='pre', value=0.)
... [[1 1 1 1 1]
...  [2 2 2 0 0]
...  [3 3 0 0 0]]
>>> data = [[1,2,0,0,0], [1,2,3,0,0], [1,2,6,1,0]]
>>> o = tl.layers.retrieve_seq_length_op2(data)
>>> sess = tf.InteractiveSession()
>>> tl.layers.initialize_global_variables(sess)
>>> print(o.eval())
... [2 3 4]

11. Common problems

  • Matplotlib issue arise when importing TensorLayer issues, FQA

12. Compatibility with other TF wrappers

TL can interact with other TF wrappers, which means if you find some codes or models implemented by other wrappers, you can just use it !

  • Keras to TL: KerasLayer (if you find some codes implemented by Keras, just use it. example here)
  • TF-Slim to TL: SlimNetsLayer (you can use all Google's pre-trained convolutional models with this layer !!!)
  • I think more libraries will be compatible with TL

13. Compatibility with different TF versions

Useful links

Author

  • Zhang Rui
  • You