Designing a Better Asymmetric VQGAN for StableDiffusion
We propose the Asymmetric VQGAN, to preserve the information of conditional image input. Asymmetric VQGAN involves two core designs compared with the original VQGAN as shown in the figure. First, we introduce a conditional branch into the decoder of the VQGAN which aims to handle the conditional input for image manipulation tasks. Second, we design a larger decoder for VQGAN to better recover the losing details of the quantized codes.
Top: The inference process of our symmetric VQGAN. Bottom: The inference process of vanilla VQGAN.
- Our pre-trained models are available:
pip install -r requirements.txt
pip install wandb
pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
pip install -e git+https://github.com/openai/CLIP.git@main#egg=clip
The inpainting model sd-v1-5-inpainting.ckpt of StableDiffusion is here
The text2image model v1-5-pruned-emaonly.ckpt of StableDiffusion is here
Download our images and masks .
python inpaint_st.py --config {config_spec}
where config_spec
is one of {autoencoder_kl_32x32x4.yaml
(base decoder), autoencoder_kl_32x32x4_large.yaml
(large decode 1.5x),
autoencoder_kl_32x32x4_large2.yaml
(large decoder 2x).
model | pretrain | resolution | fid | lpips | pre_error |
---|---|---|---|---|---|
StableDiffusion + vanilla VQGAN | ImageNet-1K | 224x224 | 9.57 | 0.255 | 1082.8e^-5 |
StableDiffusion + asymmetric VQGAN (base) | ImageNet-1K | 224x224 | 7.60 | 0.137 | 5.7e^-5 |
StableDiffusion + asymmetric VQGAN (Large 1.5x) | ImageNet-1k | 224x224 | 7.55 | 0.136 | 2.6e^-5 |
StableDiffusion + asymmetric VQGAN (Large 2x) | ImageNet-1k | 224x224 | 7.49 | 0.134 | 2.1e^-5 |
python txt2img.py --plms --config_c {config_spec}
where config_spec
is one of {autoencoder_kl_woc_32x32x4.yaml
(base decoder), autoencoder_kl_woc_32x32x4_large.yaml
(large decode 1.5x),
autoencoder_kl_woc_32x32x4_large2.yaml
(large decoder 2x).
model | fid | is |
---|---|---|
StableDiffusion + vanilla VQGAN | 19.88 | 37.55 |
StableDiffusion + asymmetric VQGAN (base) w/o mask | 19.92 | 37.52 |
StableDiffusion + asymmetric VQGAN (Large 1.5x) w/o mask | 19.75 | 37.64 |
StableDiffusion + asymmetric VQGAN (Large 2x) w/o mask | 19.68 | 37.73 |
- Our codebase for the diffusion models builds heavily on StableDiffusion. Thanks for open-sourcing!
@misc{zhu2023designing,
title={Designing a Better Asymmetric VQGAN for StableDiffusion},
author={Zixin Zhu and Xuelu Feng and Dongdong Chen and Jianmin Bao and Le Wang and Yinpeng Chen and Lu Yuan and Gang Hua},
year={2023},
eprint={2306.04632},
archivePrefix={arXiv},
primaryClass={cs.CV}
}