Gatech CSE6140/CX4140 Fall 2021 TSP Project
tsp_main.py
: program entry, has four arguments-inst
: the path of the input dataset-alg
: the algorithm, from Branch-and-Bound / Approximation / Local Search 1 / Local Search 2-time
: cutoff time, in seconds-seed
: random seed- Usage:
python3 tsp_main.py -inst <filename> -alg [BnB | Approx | LS1 | LS2] -time <cutoff_in_seconds> [-seed <random_seed>]
eva_main.py
: evaluation entry, has five arguments-out
: the evaluation method, from Comprehensive Table / QRTDs / SQDs / Box plots-i
: the input path-o
: the output path-run
: whether force it to rerun all algorithms-alg
: the algorithm, from Branch-and-Bound / Approximation / Local Search 1 / Local Search 2 / All algorithms- Usage:
python3 eva_main.py -out [table | qrtd | sqd | box] -i <input_path> -o <output_path> -run [T | F] -alg [BnB | Approx | LS1 | LS2 | all]
evaluate/table.py
: output comprehensive tablesevaluate/qrtd.py
: output QRTD plotsevaluate/sqd.py
: output SQD plotsevaluate/parameters.py
: evaluation parametersevaluate/check_run.py
: run algorithms if there are no running results
graph.py
: load graph from datasetsbnb.py
: solve TSP with Branch-and-Boundapprox.py
: solve TSP with MST Approximationls1.py
: solve TSP with SAls2.py
: solve TSP with 2-optoutput/
: running resultsoutput/eva/
: evaluate results