利用 Keras 下的 LSTM 进行情感分析 我们用 Keras 提供的 LSTM 层构造和训练一个 many-to-one 的 RNN。 网络的输入是一句话,输出是一个情感值(积极或消极)。 所用数据来自 Kaggle 的情感分类比赛 (https://inclass.kaggle.com/c/si650winter11)。 该训练数据长这样: 1 I either LOVE Brokeback Mountain or think it’s great that homosexuality is becoming more acceptable!: 1 Anyway, thats why I love ” Brokeback Mountain. 1 Brokeback mountain was beautiful… 0 da vinci code was a terrible movie. 0 Then again, the Da Vinci code is super shitty movie, and it made like 700 million. 0 The Da Vinci Code comes out tomorrow, which sucks. 其中的每个句子都有个标签 1 或 0, 用来代表积极或消极。(下载数据)
先把用到的包一次性全部导入
from keras.layers.core import Activation, Dense from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM from keras.models import Sequential from keras.preprocessing import sequence from sklearn.model_selection import train_test_split import nltk #用来分词 import collections #用来统计词频 import numpy as np 1 2 3 4 5 6 7 8 9 数据准备
在开始前,先对所用数据做个初步探索。特别地,我们需要知道数据中有多少个不同的单词,每句话由多少个单词组成。
maxlen = 0 #句子最大长度 word_freqs = collections.Counter() #词频 num_recs = 0 # 样本数 with open('./train.txt','r+') as f: for line in f: label, sentence = line.strip().split("\t") words = nltk.word_tokenize(sentence.lower()) if len(words) > maxlen: maxlen = len(words) for word in words: word_freqs[word] += 1 num_recs += 1 print('max_len ',maxlen) print('nb_words ', len(word_freqs)) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 max_len 42 nb_words 2324
可见一共有 2324 个不同的单词,包括标点符号。每句话最多包含 42 个单词。
根据不同单词的个数 (nb_words),我们可以把词汇表的大小设为一个定值,并且对于不在词汇表里的单词,把它们用伪单词 UNK 代替。 根据句子的最大长度 (max_lens),我们可以统一句子的长度,把短句用 0 填充。
依前所述,我们把 VOCABULARY_SIZE 设为 2002。包含训练数据中按词频从大到小排序后的前 2000 个单词,外加一个伪单词 UNK 和填充单词 0。 最大句子长度 MAX_SENTENCE_LENGTH 设为40。
MAX_FEATURES = 2000 MAX_SENTENCE_LENGTH = 40 1 2
接下来建立两个 lookup tables,分别是 word2index 和 index2word,用于单词和数字转换。
vocab_size = min(MAX_FEATURES, len(word_freqs)) + 2 word2index = {x[0]: i+2 for i, x in enumerate(word_freqs.most_common(MAX_FEATURES))} word2index["PAD"] = 0 word2index["UNK"] = 1 index2word = {v:k for k, v in word2index.items()} 1 2 3 4 5 6
下面就是根据 lookup table 把句子转换成数字序列了,并把长度统一到 MAX_SENTENCE_LENGTH, 不够的填 0 , 多出的截掉。
X = np.empty(num_recs,dtype=list) y = np.zeros(num_recs) i=0 with open('./train.txt','r+') as f: for line in f: label, sentence = line.strip().split("\t") words = nltk.word_tokenize(sentence.lower()) seqs = [] for word in words: if word in word2index: seqs.append(word2index[word]) else: seqs.append(word2index["UNK"]) X[i] = seqs y[i] = int(label) i += 1 X = sequence.pad_sequences(X, maxlen=MAX_SENTENCE_LENGTH) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
最后是划分数据,80% 作为训练数据,20% 作为测试数据。
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=42) 1 网络构建
数据准备好后,就可以上模型了。这里损失函数用 binary_crossentropy, 优化方法用 adam。 至于 EMBEDDING_SIZE , HIDDEN_LAYER_SIZE , 以及训练时用到的BATCH_SIZE 和 NUM_EPOCHS 这些超参数,就凭经验多跑几次调优了。
EMBEDDING_SIZE = 128 HIDDEN_LAYER_SIZE = 64
model = Sequential() model.add(Embedding(vocab_size, EMBEDDING_SIZE,input_length=MAX_SENTENCE_LENGTH)) model.add(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(1)) model.add(Activation("sigmoid")) model.compile(loss="binary_crossentropy", optimizer="adam",metrics=["accuracy"]) 1 2 3 4 5 6 7 8 9 网络训练
网络构建好后就是上数据训练了。用 10 个 epochs 和 batch_size 取 32 来训练这个网络。在每个 epoch, 我们用测试集当作验证集。
BATCH_SIZE = 32 NUM_EPOCHS = 10 model.fit(Xtrain, ytrain, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS,validation_data=(Xtest, ytest)) 1 2 3
Train on 5668 samples, validate on 1418 samples
Epoch 1/10
5668/5668 [==============================] - 12s - loss: 0.2464 - acc: 0.8897 - val_loss: 0.0672 - val_acc: 0.9697
Epoch 2/10
5668/5668 [==============================] - 11s - loss: 0.0290 - acc: 0.9896 - val_loss: 0.0407 - val_acc: 0.9838
Epoch 3/10
5668/5668 [==============================] - 11s - loss: 0.0078 - acc: 0.9975 - val_loss: 0.0506 - val_acc: 0.9866
Epoch 4/10
5668/5668 [==============================] - 11s - loss: 0.0084 - acc: 0.9970 - val_loss: 0.0772 - val_acc: 0.9732
Epoch 5/10
5668/5668 [==============================] - 11s - loss: 0.0046 - acc: 0.9989 - val_loss: 0.0415 - val_acc: 0.9880
Epoch 6/10
5668/5668 [==============================] - 11s - loss: 0.0012 - acc: 0.9998 - val_loss: 0.0401 - val_acc: 0.9901
Epoch 7/10
5668/5668 [==============================] - 11s - loss: 0.0020 - acc: 0.9996 - val_loss: 0.0406 - val_acc: 0.9894
Epoch 8/10
5668/5668 [==============================] - 11s - loss: 7.7990e-04 - acc: 0.9998 - val_loss: 0.0444 - val_acc: 0.9887
Epoch 9/10
5668/5668 [==============================] - 11s - loss: 5.3168e-04 - acc: 0.9998 - val_loss: 0.0550 - val_acc: 0.9908
Epoch 10/10
5668/5668 [==============================] - 11s - loss: 7.8728e-04 - acc: 0.9996 - val_loss: 0.0523 - val_acc: 0.9901
可以看到,经过了 10 个epoch 后,在验证集上的正确率已经达到了 99%。
网络预测
我们用已经训练好的 LSTM 去预测已经划分好的测试集的数据,查看其效果。选了 5 个句子的预测结果,并打印出了原句。
score, acc = model.evaluate(Xtest, ytest, batch_size=BATCH_SIZE) print("\nTest score: %.3f, accuracy: %.3f" % (score, acc)) print('{} {} {}'.format('预测','真实','句子')) for i in range(5): idx = np.random.randint(len(Xtest)) xtest = Xtest[idx].reshape(1,40) ylabel = ytest[idx] ypred = model.predict(xtest)[0][0] sent = " ".join([index2word[x] for x in xtest[0] if x != 0]) print(' {} {} {}'.format(int(round(ypred)), int(ylabel), sent)) 1 2 3 4 5 6 7 8 9 10 Test score: 0.052, accuracy: 0.990 预测 真实 句子 0 0 oh , and brokeback mountain is a terrible movie … 1 1 the last stand and mission impossible 3 both were awesome movies . 1 1 i love harry potter . 1 1 mission impossible 2 rocks ! ! … . 1 1 harry potter is awesome i do n’t care if anyone says differently ! ..
可见在测试集上的正确率已达 99%.
TOY
我们可以自己输入一些话,让网络预测我们的情感态度。假如我们输入 I love reading. 和 You are so boring. 两句话,看看训练好的网络能否预测出正确的情感。
INPUT_SENTENCES = ['I love reading.','You are so boring.'] XX = np.empty(len(INPUT_SENTENCES),dtype=list) i=0 for sentence in INPUT_SENTENCES: words = nltk.word_tokenize(sentence.lower()) seq = [] for word in words: if word in word2index: seq.append(word2index[word]) else: seq.append(word2index['UNK']) XX[i] = seq i+=1
XX = sequence.pad_sequences(XX, maxlen=MAX_SENTENCE_LENGTH) labels = [int(round(x[0])) for x in model.predict(XX) ] label2word = {1:'积极', 0:'消极'} for i in range(len(INPUT_SENTENCES)): print('{} {}'.format(label2word[labels[i]], INPUT_SENTENCES[i])) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 积极 I love reading. 消极 You are so boring.
Yes ,预测正确。
代码
全部代码如下:
from keras.layers.core import Activation, Dense from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM from keras.models import Sequential from keras.preprocessing import sequence from sklearn.model_selection import train_test_split import collections import nltk import numpy as np
maxlen = 0 word_freqs = collections.Counter() num_recs = 0 with open('./train.txt','r+') as f: for line in f: label, sentence = line.strip().split("\t") words = nltk.word_tokenize(sentence.lower()) if len(words) > maxlen: maxlen = len(words) for word in words: word_freqs[word] += 1 num_recs += 1 print('max_len ',maxlen) print('nb_words ', len(word_freqs))
MAX_FEATURES = 2000 MAX_SENTENCE_LENGTH = 40 vocab_size = min(MAX_FEATURES, len(word_freqs)) + 2 word2index = {x[0]: i+2 for i, x in enumerate(word_freqs.most_common(MAX_FEATURES))} word2index["PAD"] = 0 word2index["UNK"] = 1 index2word = {v:k for k, v in word2index.items()} X = np.empty(num_recs,dtype=list) y = np.zeros(num_recs) i=0 with open('./train.txt','r+') as f: for line in f: label, sentence = line.strip().split("\t") words = nltk.word_tokenize(sentence.lower()) seqs = [] for word in words: if word in word2index: seqs.append(word2index[word]) else: seqs.append(word2index["UNK"]) X[i] = seqs y[i] = int(label) i += 1 X = sequence.pad_sequences(X, maxlen=MAX_SENTENCE_LENGTH)
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=42)
EMBEDDING_SIZE = 128 HIDDEN_LAYER_SIZE = 64 BATCH_SIZE = 32 NUM_EPOCHS = 10 model = Sequential() model.add(Embedding(vocab_size, EMBEDDING_SIZE,input_length=MAX_SENTENCE_LENGTH)) model.add(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(1)) model.add(Activation("sigmoid")) model.compile(loss="binary_crossentropy", optimizer="adam",metrics=["accuracy"])
model.fit(Xtrain, ytrain, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS,validation_data=(Xtest, ytest))
score, acc = model.evaluate(Xtest, ytest, batch_size=BATCH_SIZE) print("\nTest score: %.3f, accuracy: %.3f" % (score, acc)) print('{} {} {}'.format('预测','真实','句子')) for i in range(5): idx = np.random.randint(len(Xtest)) xtest = Xtest[idx].reshape(1,40) ylabel = ytest[idx] ypred = model.predict(xtest)[0][0] sent = " ".join([index2word[x] for x in xtest[0] if x != 0]) print(' {} {} {}'.format(int(round(ypred)), int(ylabel), sent))
INPUT_SENTENCES = ['I love reading.','You are so boring.'] XX = np.empty(len(INPUT_SENTENCES),dtype=list) i=0 for sentence in INPUT_SENTENCES: words = nltk.word_tokenize(sentence.lower()) seq = [] for word in words: if word in word2index: seq.append(word2index[word]) else: seq.append(word2index['UNK']) XX[i] = seq i+=1
XX = sequence.pad_sequences(XX, maxlen=MAX_SENTENCE_LENGTH) labels = [int(round(x[0])) for x in model.predict(XX) ] label2word = {1:'积极', 0:'消极'} for i in range(len(INPUT_SENTENCES)): print('{} {}'.format(label2word[labels[i]], INPUT_SENTENCES[i]))