/crawler-NRW-aerial-images

Crawl aerial images (published by Bezirksregierung NRW) of a selected bounding box or city in North Rhine-Westphalia and save tiles of those images on the fly with reduced resolution.

Primary LanguagePython

crawler-aerial-images

Crawl aerial images (published by Bezirksregierung NRW) of a selected areas in North Rhine-Westphalia and save tiles of those images on the fly with reduced resolution.

Update

Use the wms service by selecting a bounding box of an area to request (recommended). This area will be divided into 100 x 100 meter tiles and saved into a (by parameter) defined directory. The file naming has following pattern:

<xmin>_<ymin>_<xmax>_<ymax>.png

Example for an area within the inner city of Cologne, Germany:

get_wms_images.py --xmin 353900 --ymin 5642000 --xmax 357400 --ymax 5647000 --name 2020_1 --resolution 400 --layer 2020

You can choose between current and historical images, where 2020 requests the current images and all other values request the layers of the wms service for historical images.

Use the parameters as followed:

  • xmin, ymin, xmax, ymax: the x,y values of the bounding box of
  • name: the name of the directory where the tile images are stored
  • resolution: the resolution of the tiles
  • layer: choose year for historical images

Regarding the layer parameter:

See:

Please also check the comments in get_wms_images.py

If an image for a specific request is not available (beside a real request error), the service will return a white (blank) image.

Usage

Install python environment

$ pipenv install

and change into shell

$ pipenv shell

You can exit the shell with

$ exit

Then change into /src and request a) the webservice

$ cd src
$ python get_images.py

or b) the wms Service recommended

$ cd src
$ python get_wms_images.py --xmin 353900 --ymin 5642000 --xmax 357400 --ymax 5647000 --name 2020_1 --layer 2020

If you want to use the webservice

The original images have a tremendously high resolution (10cm per pixel resp. 10000x10000 pixel), which is far too high for many computer vision applications (i.e. object detection with machine learning techniques).
Hence this little crawler to automatically create instantly useable imagesets.

The default call requests "Köln" with a resolution of 400 (pixel width/height). You can specify these parameter:

$ python get_images.py --municipal Köln --resolution 400     

The --municipal parameter checks for substrings in the column "Bildflugnummer" in the image_lookup_table.csv.

Each 10000 x 10000 pixel image will coverted into RGB and cut into 100 tiles. Each tile will then be reduced to the passed resolution.

The tiles are saved in /exports under a directory named as the passed municipal. The naming convention is
x1_y1_x2_y2.png (i.e. 353000_5641000_353500_5641500.png)

Note
The covered area which falls under one "Bildflugnummer" is way bigger than you might be interested in. Right now (for my own purpose), I manually implemented a bounding box if municipal equals "Köln" to restrict incoming images.
Please have a look at _image_crawler.py to change / addapt these values (see: global variable BOUNDING_BOX_COLOGNE_CITY and function crawl_municipal_images)

About original data

For the official product description of the image sets, please refer to the page Digitale Orthophotos by Bezirksregierung NRW.

Usage and licensing of these images are defined on that page as followed:

Die digitalen Geobasisdaten werden nach Open Data-Prinzipien kostenfrei über automatisierte Abrufverfahren bereitgestellt. Es gelten die durch den IT-Planungsrat im Datenportal für Deutschland (GovData) veröffentlichten einheitlichen Lizenzbedingungen „Datenlizenz Deutschland – Zero“ (dl-de/zero-2-0). Jede Nutzung ist ohne Einschränkungen oder Bedingungen zulässig. Der Lizenztext ist unter www.govdata.de/dl-de/zero-2-0 abrufbar.

There are different bundles available:

The lookup table (resp. data description per image file) can be found here (zipped .csv):
Metadaten zum Datensatz

The reduced version of the lookup table and a short documentation can be found here image_lookup_table.csv.