/PEG

Primary LanguagePythonMIT LicenseMIT

PEG

The official implementation of PEG for our paper: Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks.

Introduction

In this work, we propose a principled way of using stable Positional Encoding (PE) to build more powerful GNNs. The key idea is to use separate channels to update the original node features and positional features. To achieve PE-stability, the GNN layer should keep not only permutation equivariance w.r.t. node features but also rotation equivariance w.r.t. positional features. This idea applies to a broad range of PE techniques that can be formulated as matrix factorization such as Laplacian Eigenmap (LE) and Deepwalk (DW).

We design a GNN layer with edge weights according to distance between the end nodes of the edge and keep the position features unchanged. This satisfies the above two necessary conditions and gives the PE-stable GNN layer as

Here, is an element-wise activation function, is an MLP mapping from and is the Hadamard product.

Requirements

(Other versions may work, but are untested)

  • Python 3.7
  • PyTorch 1.8.1 Cuda 10.2
  • Tensorflow 2.6.0
  • NetworkX 2.6.2
  • Numpy 1.20.3
  • Scipy 1.6.2
  • Scikit-Learn 0.24.1
  • dgl 0.6.1
  • torch-geometric 2.0.3

PEG Environment Setup

  • Install basic dependencies to virtual environment and activate it:
conda env create -f environment.yml
conda activate PEG_env
  • Example commends of installation for PyTorch (>= 1.8.0) and torch-geometric (>=1.7.2) with CUDA 10.2:
conda install pytorch==1.8.0 torchvision torchaudio cudatoolkit=10.2
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html
pip install torch-geometric==1.7.2

For more details, please refer to the PyTorch and PyTorch Geometric. The code of this repository is lately tested with Python 3.7.11 + PyTorch 1.8.1 + torch-geometric 1.7.2.

Run Examples

In Task 1 (traditional link prediction), the model gets trained, validated and tested over the same graphs while using different link sets. In Task 2 (domain-shift link prediction), the graph used for training/validation is different from the one used for testing. Both tasks may reflect the effectiveness of a model while Task 2 may better demonstrate the model's generalization capability that strongly depends on permutation equivariance and stability.

Task1
cd task1

PEG-DW using node feature on cora

python main.py --PE_method DW --dataset cora --feature_type N

PEG-LE+ using constant feature on cora

python main.py --PE_method LE --dataset cora --feature_type C --random_partition --hidden_dim 1

For ddi and collab, the script is under the folder task1_OGB.

Task2
cd task2

PEG-DW using node feature on cora->citeseer

python main.py --PE_method DW --source_dataset cora --target_dataset citeseer --feature_type N

PEG-LE+ using constant feature on cora->citeseer

python main.py --PE_method LE --source_dataset cora --target_dataset citeseer --feature_type C --random_partition --hidden_dim 1

For PPI dataset

python PPI.py --PE_method LE --feature_type N
python PPI.py --PE_method DW --feature_type C --hidden_dim 1

Usage Summary

usage: main.py [-h] [--device DEVICE]
               [--dataset {cora,citeseer,pubmed,PTBR,RU,ENGB,ES,chameleon}]
               [--PE_method {DW,LE}] [--feature_type {N,C}]
               [--num_layers NUM_LAYERS] [--PE_dim PE_DIM]
               [--hidden_dim HIDDEN_DIM] [--batch_size BATCH_SIZE] [--lr LR]
               [--weight_decay WEIGHT_DECAY] [--epochs EPOCHS]
               [--val_ratio VAL_RATIO] [--test_ratio TEST_RATIO]
               [--random_partition]

Optional Arguments

optional arguments:
  -h, --help            show this help message and exit
  --device DEVICE
  --dataset {cora,citeseer,pubmed,PTBR,RU,ENGB,ES,chameleon}
                        dataset name
  --PE_method {DW,LE}   positional encoding techniques
  --feature_type {N,C}  features type, N means node feature, C means constant
                        feature (node degree)
  --num_layers NUM_LAYERS
                        number of layers
  --PE_dim PE_DIM       dimension of positional encoding
  --hidden_dim HIDDEN_DIM
                        hidden dimension
  --batch_size BATCH_SIZE
                        batch size
  --lr LR               learning rate
  --weight_decay WEIGHT_DECAY
                        weight decay
  --epochs EPOCHS       number of epochs to train
  --val_ratio VAL_RATIO
                        validation ratio
  --test_ratio TEST_RATIO
                        testing ratio
  --random_partition    whether to use random partition while training

Citation

Please refer to our paper. Haorui Wang, Haoteng Yin, Muhan Zhang, Pan Li. Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks. In International Conference on Learning Representations (ICLR), 2022

  @inproceedings{wang2022equivariant,
  title={Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks},
  author={Wang, Haorui and Yin, Haoteng and Zhang, Muhan and Li, Pan},
  booktitle={International Conference on Learning Representations},
  year={2022}

}