-
LTMU: Kenan Dai, Yunhua Zhang, Dong Wang, Jianhua Li, Huchuan Lu, Xiaoyun Yang.
"High-Performance Long-Term Tracking with Meta-Updater." CVPR (2020). [paper] [code] VOT2019-LT Winner🌟This work is an improved version of the VOT2019-LT winner,
[LT_DSE]. -
Siam R-CNN: Paul Voigtlaender, Jonathon Luiten, Philip H.S. Torr, Bastian Leibe.
"Siam R-CNN: Visual Tracking by Re-Detection." ArXiv (2019). [paper] -
DAL: Yanlin Qian, Alan Lukežič, Matej Kristan, Joni-Kristian Kämäräinen, Jiri Mata
"DAL - A Deep Depth-aware Long-term Tracker" ArXiv (2019). [paper]RGB-D Long-term
-
GlobalTrack: Lianghua Huang, Xin Zhao, Kaiqi Huang.
"GlobalTrack: A Simple and Strong Baseline for Long-term Tracking." AAAI (2020). [paper] [code] -
SPLT: Bin Yan, Haojie Zhao, Dong Wang, Huchuan Lu, Xiaoyun Yang.
"Skimming-Perusal' Tracking: A Framework for Real-Time and Robust Long-Term Tracking." ICCV (2019). [paper] [code] -
flow_MDNet_RPN: Han Wu, Xueyuan Yang, Yong Yang, Guizhong Liu.
"Flow Guided Short-term Trackers with Cascade Detection for Long-term Tracking." ICCVW (2019). [paper] -
OTR: Ugur Kart, Alan Lukezic, Matej Kristan, Joni-Kristian Kamarainen, Jiri Matas.
"Object Tracking by Reconstruction with View-Specific Discriminative Correlation Filters." CVPR (2019). [paper] [code]RGB-D Long-term
-
SiamRPN++: Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, Junjie Yan. "SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks." CVPR (2019). [paper] [code]
-
MBMD: Yunhua Zhang, Dong Wang, Lijun Wang, Jinqing Qi, Huchuan Lu.
"Learning regression and verification networks for long-term visual tracking." Arxiv (2018). [paper] [code] VOT2018-LT Winner🌟 -
MMLT: Hankyeol Lee, Seokeon choi, Changick Kim.
"A Memory Model based on the Siamese Network for Long-term Tracking." ECCVW (2018). [paper] [code] -
FuCoLoT: Alan Lukežič, Luka Čehovin Zajc, Tomáš Vojíř, Jiří Matas and Matej Kristan.
"FuCoLoT - A Fully-Correlational Long-Term Tracker." ACCV (2018). [paper] [code]
-
SiamDW: Zhipeng Zhang, Houwen Peng.
"Deeper and Wider Siamese Networks for Real-Time Visual Tracking." CVPR (2019). [paper] [code] VOT2019 RGB-D Winner🌟 Denoted as "SiamDW_D" "SiamDW_LT", see the VOT2019 official report -
DaSiam_LT: Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, Weiming Hu.
"Distractor-Aware Siamese Networks for Visual Object Tracking." ECCV (2018). [paper] [code] VOT2018-LT Runner-up🌟
-
PTAV: Heng Fan, Haibin Ling.
"Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking." ICCV (2017). [paper] [supp] [project] [code] -
EBT: Gao Zhu, Fatih Porikli, Hongdong Li.
"Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals." CVPR (2016). [paper] [exe] -
LCT: Chao Ma, Xiaokang Yang, Chongyang Zhang, Ming-Hsuan Yang.
"Long-term Correlation Tracking." CVPR (2015). [paper] [project] [github] -
MUSTer: Zhibin Hong, Zhe Chen, Chaohui Wang, Xue Mei, Danil Prokhorov, Dacheng Tao.
"MUlti-Store Tracker (MUSTer): a Cognitive Psychology Inspired Approach to Object Tracking." CVPR (2015). [paper] [project] -
CMT: Georg Nebehay, Roman Pflugfelder.
"Clustering of Static-Adaptive Correspondences for Deformable Object Tracking." CVPR (2015). [paper] [project]
[github] -
TLD: Zdenek Kalal, Krystian Mikolajczyk, Jiri Matas.
"Tracking-Learning-Detection." TPAMI (2012). [paper] [project]
-
VOT: . [Visual Object Tracking Challenge]
-
OxUvA: Jack Valmadre, Luca Bertinetto, João F. Henriques, Ran Tao, Andrea Vedaldi, Arnold Smeulders, Philip Torr, Efstratios Gavves.
"Long-term Tracking in the Wild: a Benchmark." ECCV (2018). [paper] [project] -
TLP: Abhinav Moudgil, Vineet Gandhi.
"Long-term Visual Object Tracking Benchmark." ACCV (2018). [paper] [project] -
CDTB: Alan Lukežič, Ugur Kart, Jani Käpylä, Ahmed Durmush, Joni-Kristian Kämäräinen, Jiří Matas, Matej Kristan.
"CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark." ICCV (2019). [paper] [project]RGB-D Long-term
-
LaSOT: Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan Liao, Haibin Ling.
"LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking." CVPR (2019). [paper] [project]
The LaSOT dataset is not a typical long-term dataset. But it is a good choice for connecting long-term and short-term trackers. Usually, short-term trackers drift very easily in the long-term datasets since they have no re-detection module. Long-term trackers also achieve unsatisfactory performance in the short-term datasets, since the tested sequences are often very short and the evaluation criterion pay less attention to the re-detection capability (especially VOT' EAO). LaSOT is a large-scale, long-frame dataset with precision and succuess criterion. Thus, it is a good choice if you want to fairly compare the performance of long-term and short-term trackers in one figure/table.
-
UAV20L: Matthias Mueller, Neil Smith and Bernard Ghanem.
"A Benchmark and Simulator for UAV Tracking." ECCV (2016). [paper] [project] [dataset]
All 20 videos of UAV20L have been included in the VOT2018LT dataset.
-
Alan Lukežič, Luka Čehovin Zajc, Tomáš Vojíř, Jiří Matas, Matej Krista. "Performance Evaluation Methodology for Long-Term Visual Object Tracking." ArXiv (2019). [paper]
-
Alan Lukežič, Luka Čehovin Zajc, Tomáš Vojíř, Jiří Matas, Matej Kristan. "Now You See Me: Evaluating Performance in Long-term Visual Tracking." ArXiv (2018). [paper]
-
Shyamgopal Karthik, Abhinav Moudgil, Vineet Gandhi. "Exploring 3 R's of Long-term Tracking: Re-detection, Recovery and Reliability." WACV (2020). [paper]
-
"Paper, Benchmark, Researchers, Teams" maintained by Qiang Wang:
https://github.com/foolwood/benchmark_results -
"pysot [SiamRPN++, SiamMask, DaSiamRPN, SiamRPN]":
https://github.com/STVIR/pysot -
"pytracking [DIMP, ATOM]":
https://github.com/visionml/pytracking