/VIBUS

Primary LanguagePython

VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling

Beiwen Tian, Liyi Luo, Hao Zhao, Guyue Zhou

This repository contains implementation and checkpoints of VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling.

Our work has been accepted by ISPRS Journal of Photogrammetry and Remote Sensing. Our paper is publicly available here.

Prepare Conda environment

The version of CUDA-Toolkit should NOT be higher than 11.1.

# Create conda environment
conda create -n vibus python=3.8
conda activate vibus

# Install MinkowskiEngine
export CUDA_HOME=/usr/local/cuda-11.1
conda install openblas-devel -c anaconda
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 \
    -f https://download.pytorch.org/whl/torch_stable.html
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps \
    --install-option="--blas_include_dirs=${CONDA_PREFIX}/include" \
    --install-option="--blas=openblas"

# Install pointnet2 package
cd pointnet2
python setup.py install

# Install bfs package
conda install -c bioconda google-sparsehash
cd instanc_segmentation/lib/bfs/ops
python setup.py build_ext --include-dirs=${CONDA_PREFIX}/include
python setup.py install

# Install other requirements
pip install \
    easydict==1.9 \
    imageio==2.9.0 \
    plyfile==0.7.4 \
    tensorboardx==2.2 \
    open3d==0.13.0 \
    protobuf==3.20.0

pip install potpourri3d pymeshlab

cd SUField/
pip install -e . 

Testing

Semantic Segmentation on ScanNet

You may specify the paths to datasets and checkpoints in semantic_segmentation/scannet_ss_test.sh

cd semantic_segmentation/
./scannet_ss_test.sh

Semantic Segmentation on S3DIS

You may specify the paths to datasets and checkpoints in semantic_segmentation/s3dis_ss_test.sh

cd semantic_segmentation/
./s3dis_ss_test.sh

Semantic Segmentation on Semantic3D

You may specify the paths to datasets and checkpoints in semantic_segmentation/semantic3d_ss_test.sh

cd semantic_segmentation/
./semantic3d_ss_test.sh

Instance Segmentation on ScanNet

You may specify the paths to datasets and checkpoints in instance_segmentation/scannet_is_test.sh

cd instance_segmentation/
./scannet_is_test.sh

Instance Segmentation on S3DIS

You may specify the paths to datasets and checkpoints in instance_segmentation/s3dis_is_test.sh

cd instance_segmentation/
./s3dis_is_test.sh

Visualization

  1. Collect the inference results

    Please change SAVE_PATH in scannet_ss_test_collect_pred.sh

    cd semantic_segmentation/
    ./scannet_ss_test_collect_pred.sh
  2. Run a script so that the color of the point cloud is changed according to the predictions:

    cd semantic_segmentation/
    python visualize.py --dataset_root /save/path/in/step/1

Viewpoint-Bottleneck Pretraining (self supervised)

cd pretrain/
./run.sh

Supervised Training / Fine-tuning

Semantic Segmentation on ScanNet

You may specify the paths to the datasets in semantic_segmentation/scannet_ss_train.sh

cd semantic_segmentation/
./scannet_ss_train.sh

Semantic Segmentation on S3DIS

You may specify the paths to the datasets in semantic_segmentation/s3dis_ss_train.sh

cd semantic_segmentation/
./s3dis_ss_train.sh

Semantic Segmentation on Semantic3D

You may specify the paths to the datasets in semantic_segmentation/semantic3d_ss_train.sh

cd semantic_segmentation/
./semantic3d_ss_train.sh

Instance Segmentation on ScanNet

You may specify the paths to the datasets in instance_segmentation/scannet_is_train.sh

cd instance_segmentation/
./scannet_is_train.sh

Instance Segmentation on S3DIS

You may specify the paths to the datasets in instance_segmentation/s3dis_is_train.sh

cd instance_segmentation/
./s3dis_is_train.sh

Perform Spectral / Uncertainty Filtering (on ScanNet)

Spectral

  1. Collect the inference results

    Please change SAVE_PATH in scannet_ss_test_collect_pred.sh

    cd semantic_segmentation/
    ./scannet_ss_test_collect_pred.sh
  2. Perform Spectrum Filtering

    Please pass SAVE_PATH in step 1 as param for --dataset_root.

    cd semantic_segmentation/
    python fit.py --action spectrum --dataset_root /path/to/last/save/root --save_root /path/to/save/filtered/dataset
  3. Use filtered dataset with pseudo labels to fine-tune model

    Please change DATASET_PATH to the save path for filtered dataset in step 2 in scannet_ss_train.sh.

    cd semantic_segmentation/
    ./scannet_ss_train.sh

Uncertainty

  1. Collect the inference results

    Please change SAVE_PATH in scannet_ss_test_collect_pred_unc.sh

    cd semantic_segmentation/
    ./scannet_ss_test_collect_pred_unc.sh
  2. Perform Spectrum Filtering

    Please pass SAVE_PATH in step 1 as param for --stat_root.

    cd semantic_segmentation/
    python fit.py --action uncertainty --dataset_root /path/to/original/dataset --stat_root /path/to/last/save/root --save_root /path/to/save/filtered/dataset
  3. Use filtered dataset with pseudo labels to fine-tune model

    Please change DATASET_PATH to the save path for filtered dataset in step 2 in scannet_ss_train.sh.

    cd semantic_segmentation/
    ./scannet_ss_train.sh

Model Zoo

Viewpoint Bottleneck (VIB) Self-Supervised Pretrain

Dataset Task
ScanNet Google Drive
S3DIS Google Drive
Semantic3D Google Drive

Final Checkpoints

Dataset Supervision Task
Semantic Segmentation Instance Segmentation
ScanNet Limited Annotations 20 pts. Google Drive Google Drive
50 pts. Google Drive Google Drive
100 pts. Google Drive Google Drive
200 pts. Google Drive Google Drive
Limited Reconstructions 1% Google Drive Google Drive
5% Google Drive Google Drive
10% Google Drive Google Drive
20% Google Drive Google Drive
Full Google Drive Google Drive
S3DIS Limited Annotations 20 pts. Google Drive Google Drive
50 pts. Google Drive Google Drive
100 pts. Google Drive Google Drive
200 pts. Google Drive Google Drive
Full Google Drive Google Drive
Semantic3D Limited Annotations 20 pts. Google Drive N/A
50 pts. Google Drive
100 pts. Google Drive
200 pts. Google Drive
Full Google Drive