/MapAbstractionVPR

Implementation for Image database abstracion

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

MapAbstractionVPR

This repository corresponds to the work entitled "Unsupervised appearance map abstraction for indoor Visual Place Recognition with mobile robots", published at IEEE Robotics and Automation Letters.

Authors: Alberto Jaenal, Francisco-Angel Moreno and Javier Gonzalez-Jimenez

Video: Click Here

Example output with test data

Cite

If you use this work in your research, please cite:

@ARTICLE{jaenal2022unsupervised,
  author={Jaenal, Alberto and Moreno, Francisco-Angel and Gonzalez-Jimenez, Javier},
  journal={IEEE Robotics and Automation Letters}, 
  title={Unsupervised Appearance Map Abstraction for Indoor Visual Place Recognition With Mobile Robots}, 
  year={2022},
  volume={},
  number={},
  pages={1-7},
  doi={10.1109/LRA.2022.3186768}}

Instructions

  1. Donwload the demo data into the data folder:
mkdir data && cd data && wget http://ftp.uma.es/Mapir/MapAbstractionVPR/data/feats-ImRet.npy && wget http://ftp.uma.es/Mapir/MapAbstractionVPR/data/feats-NetVLAD.npy && wget http://ftp.uma.es/Mapir/MapAbstractionVPR/data/poses.txt
  1. Run the map abstraction script
python run.py -p data/poses.txt -f data/feats-NetVLAD.npy -c 10

Dependencies

This software employs built-in libs (see requeriments.txt), and has been tested with Python>=3.5 on Ubuntu 16.04, 18.04 and 20.04.

The geometry.py script is inspired in ProbFiltersVPR.