/Stereo_Visual_Odometry

Implementation of Visual Odometry using the KITTI stereo images dataset.

Primary LanguageJupyter Notebook

Stereo_Visual_Odometry

Project Status

Python Version Jupyter Notebook Conda Version OpenCV Version Docker Version

This repository contains an implementation of stereo visual odometry using images from the KITTI Odometry dataset. This project uses stereo depth estimation using the open-cv python package.

Dataset

You can download the following data files from the KITTI dataset

  • odometry_data_set(grayscale) ~ 22GB
  • odometry_data_set(velodyne_laser_data) ~ 80GB
  • odometry_data_set(calibration_files) ~ 1MB
  • odometry_ground_truth_poses ~ 4 MB

download and place them in your data folder as shown in the directory structure section of the readme file.

Dependencies

The list of dependencies for the project can be found on the environment.yml file

To recreate the environment used to develop this project, you can create a conda environment using the environment.yml file provided:

conda env create -f environment.yml

This will create a new environment named stereo-visual-odometry-env with all the necessary packages installed. You can then activate the environment using the following command:

conda activate stereo-visual-odometry-env

Once the environment is activated, you can run the project and use the packages listed above.

Directory Structure

Stereo_Visual_Odometry
├── dataset
│   ├── data_odometry_calib
│   ├── data_odometry_gray
│   ├── data_odometry_poses
│   └── data_odometry_velodyne
├── environment.yml
├── Images
├── README.md
└── Stereo Visual Odometry.ipynb

Running the Project

Future Work