/visemenet-inference

3D Avatar Lip Syncronization from speech (JALI based face-rigging)

Primary LanguagePythonApache License 2.0Apache-2.0

visemenet-inference

  • Inference Demo of "VisemeNet-tensorflow"
    • VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard FACS-based face-rigging from input audio.
    • The original repo is outdated and difficult to setup the environment for testing the pretrained model. This code is to provide a super-clean inference module based on the original author's repo.

Model Inference

Colab Demo

  • This code provides the simple and clean inference code without any needless ones
  • It's compatible with TF 2.0 Version

Requirements

  • Tensorflow 2.x
  • numpy
  • scipy
  • python_speech_features

How to run inference

import numpy as np
from inference import VisemeRegressor

pb_filepath = "./visemenet_frozen.pb"
wav_file_path = "./test_audio.wav"
out_txt_path = "./maya_viseme_outputs.txt"

viseme_regressor = VisemeRegressor(pb_filepath=pb_filepath)

viseme_outputs = viseme_regressor.predict_outputs(wav_file_path=wav_file_path)

np.savetxt(out_txt_path, viseme_outputs, '%.4f')

How to freeze graph

Requirements

  • Python 3.6.x using "pyenv"
  • Tensorflow 1.1.0
  1. Setup the envs and packages
# Install Virtualenv using pyenv
pyenv install 3.6.5
pyenv virtualenv 3.6.5 visemenet-freeze
pyenv activate visemenet-freeze
# Install packages
pip install tensorflow==1.1.0
  1. Clone the repo
# Clone Visemenet repo and the pretrained model
git clone https://github.com/yzhou359/VisemeNet_tensorflow.git
curl -L https://www.dropbox.com/sh/7nbqgwv0zz8pbk9/AAAghy76GVYDLqPKdANcyDuba?dl=0 > pretrained_model.zip
unzip prtrained_model.zip -d VisemeNet_tensorflow/data/ckpt/pretrain_biwi/
  1. Freeze Graph and Save as pb
# Freeze Graph
python freeze_graph.py