/HetCalibrate-Reproducibility

This instruction aims to reproduce the results in the paper “Calibration of inexact computer models with heteroscedastic errors” proposed by Sung, Barber, and Walker (2022).

Primary LanguageR

Calibration of inexact computer models with heteroscedastic errors (Reproducibility)

Chih-Li Sung October 11, 2022

This instruction aims to reproduce the results in the paper “Calibration of Inexact Computer Models with Heteroscedastic Errors” by Sung, Barber, and Walker (2022) in SIAM/ASA Journal on Uncertainty Quantification.

The code folder reproduces the results in the Sections 4 and 5 of the manuscript.

  • The required R packages include SLHD (>=2.1-1) and devtools (>=2.4.3), and the package HetCalibrate that was developed by the author Chih-Li Sung. The installation will be demonstrated.

The data folder contains the required data:

  • PLGG_growthdata_ambientCO2.csv: The plant growth data under ambient CO2 concentrations
  • PLGG_growthdata_hiCO2.csv: The plant growth data under high CO2 concentrations

The reproducibility is demonstrated as follows.

Step 0.1: install the package HetCalibrate
library(devtools)
install_github("ChihLi/HetCalibrate")
## 
## * checking for file ‘/private/var/folders/d1/cng8v70j0k33y9_6p7w5w_bc0000gr/T/RtmplvsFZU/remotes817268e6c665/ChihLi-HetCalibrate-1fa18db/DESCRIPTION’ ... OK
## * preparing ‘HetCalibrate’:
## * checking DESCRIPTION meta-information ... OK
## * checking for LF line-endings in source and make files and shell scripts
## * checking for empty or unneeded directories
## Omitted ‘LazyData’ from DESCRIPTION
## * building ‘HetCalibrate_0.1.tar.gz’
Step 0.2: load required package
library(HetCalibrate)
library(SLHD)

Reproducing Section 4.1: Figure 1

### setting ###
n.timestep <- 8
n.rep.each <- 5

# computer model
f.sim <- function(x, cpara) {
  return(c(exp(x/10)*sin(x) - sqrt(cpara^2 - cpara + 1) * (sin(cpara*x)+cos(cpara*x))))
}
df.sim <- function(x, cpara) {
  return(c(-sqrt(cpara^2-cpara+1)*(x*cos(x*cpara)-x*sin(x*cpara))-((2*cpara-1)*(sin(x*cpara)+cos(x*cpara)))/(2*sqrt(cpara^2-cpara+1))))
}

# variance process
var.f <- function(x) (0.01+0.2*(x-pi)^2)^2

# physical process
p.fun <- function(x) exp(x/10)*sin(x)

# true parameter
true.cpara <- optim(0, fn = function(g) {
  x.grid <- seq(0,2*pi,0.01)
  mean((p.fun(x.grid) - f.sim(x.grid, g))^2)
}, 
lower = -0.3, upper = 0.3, method = "L-BFGS-B")$par


# observed input
X0 <- seq(0,2*pi,length.out = n.timestep)
# mean process
pmean <- p.fun(X0)
# variance process
var.y <- var.f(X0)
# number of replicates
n.rep <- rep(n.rep.each,length(X0))

# setting for lower and upper bounds of parameters
lower <- 0.01*max(X0)
upper <- 2.5*max(X0)
cpara_min <- -0.3  
cpara_max <- 0.3
cpara_init.vt <- c(-0.2, 0, 0.2)


### plot one example 
set.seed(1)

# simulate X and Z
X <- matrix(rep(X0, n.rep), ncol = 1)
Z <- rep(0, sum(n.rep))
for(i in 1:length(X0)) {
  Z[(ifelse(i==1,0,sum(n.rep[1:(i-1)]))+1):sum(n.rep[1:i])] <- pmean[i] + rnorm(n.rep[i], 0, sd = sqrt(var.y[i]))
}

## WLS
X0 <- hetGP::find_reps(X, Z)$X0
Z0 <- hetGP::find_reps(X, Z)$Z0
Sigma_inv <- diag(1/sapply(hetGP::find_reps(X, Z)$Zlist, var))
min.index <- which.min(apply(matrix(seq(cpara_min, cpara_max, length.out = 11),ncol=1), 1, function(x) optim(x, fn = function(g) t(Z0 - f.sim(X0, g)) %*% Sigma_inv %*% (Z0 - f.sim(X0, g)), 
                                                                                                             lower = cpara_min, upper = cpara_max, method = "L-BFGS-B")$value))

cpara.WLS <- optim(seq(cpara_min, cpara_max, length.out = 11)[min.index], 
                   fn = function(g) t(Z0 - f.sim(X0, g)) %*% Sigma_inv %*% (Z0 - f.sim(X0, g)), 
                   lower = cpara_min, upper = cpara_max, method = "L-BFGS-B")$par
xgrid <- matrix(seq(min(X0), max(X0), length.out = 101), ncol = 1) 
predictions.WLS <- f.sim(xgrid, cpara.WLS)
cat("============= WLS parameter:", cpara.WLS, "=============\n")
## ============= WLS parameter: -0.278369 =============
## KO
model <- vector("list", 3)
jj <- 0
for(cpara.init in cpara_init.vt){
  jj <- jj + 1
  model[[jj]] <- mleHomCalibrate(X = X, Z = Z, cpara_max = cpara_max, cpara_min = cpara_min,
                                 lower = lower, upper = upper,
                                 init = list("cpara" = cpara.init),
                                 covtype = "Matern5_2", orthogonal = FALSE, f.sim = f.sim, df.sim = df.sim)
}

llmax.index <- which.max(sapply(model, function(x) x$ll))
model <- model[[llmax.index]]
cpara.Hom <- model$cpara
predictions.Hom <- predict(x = xgrid, object =  model)
cat("============= HomGP parameter:", cpara.Hom, "=============\n")
## ============= HomGP parameter: 0.2673526 =============
## our model
model <- vector("list", 3)
jj <- 0
for(cpara.init in cpara_init.vt){
  jj <- jj + 1
  model[[jj]] <- mleHetCalibrate(X = X, Z = Z, cpara_max = cpara_max, cpara_min = cpara_min,
                                 lower = lower, upper = upper,
                                 init = list("cpara" = cpara.init),
                                 settings = list(checkHom = FALSE, linkThetas = "none"),
                                 covtype = "Matern5_2", orthogonal = TRUE, f.sim = f.sim, df.sim = df.sim)
  
}
llmax.index <- which.max(sapply(model, function(x) x$ll))
model <- model[[llmax.index]]
cpara.Het.OGP <- model$cpara
predictions.Het <- predict(x = xgrid, object =  model)
cat("============= HetOGP parameter:", cpara.Het.OGP, "=============\n")
## ============= HetOGP parameter: -0.1727379 =============
par(mfrow=c(2,3), oma=c(4.5, 4, 0, 2.5), mar=c(0.5,0.5,1.5,0.5))
## mean process
# WLS
plot(X, Z, ylab = 'y', xlab = "", xaxt="n")
mtext("y", 2, 3, las = 0)
axis(1, seq(0,6,1), labels = rep("", 7))
points(X0, Z0, pch = 20, cex = 1.2)
lines(xgrid, predictions.WLS, col = 'red', lwd = 2)
curve(p.fun, min(X0), max(X0), add = TRUE, col = 1, lty = 2, lwd = 1)
lines(xgrid, f.sim(xgrid, cpara.WLS), col = 4, lty = 2, lwd = 2)

# KO
plot(X, Z, ylab = 'y', xlab = "", xaxt="n", yaxt="n")
axis(1, seq(0,6,1), labels = rep("", 7))
points(X0, Z0, pch = 20, cex = 1.2)
lines(xgrid, predictions.Hom$mean, col = 'red', lwd = 2)
curve(p.fun, min(X0), max(X0), add = TRUE, col = 1, lty = 2, lwd = 1)
lines(xgrid, qnorm(0.025, predictions.Hom$mean, sqrt(predictions.Hom$sd2 + predictions.Hom$nugs)), 
      col = 3, lty = 3, lwd = 2)
lines(xgrid, qnorm(0.975, predictions.Hom$mean, sqrt(predictions.Hom$sd2 + predictions.Hom$nugs)), 
      col = 3, lty = 3, lwd = 2)
lines(xgrid, f.sim(xgrid, cpara.Hom), col = 4, lty = 2, lwd = 2)

# our model
plot(X, Z, ylab = 'y', xlab = "", xaxt="n", yaxt="n")
axis(1, seq(0,6,1), labels = rep("", 7))
points(X0, Z0, pch = 20, cex = 1.2)
lines(xgrid, predictions.Het$mean, col = 'red', lwd = 2)
curve(p.fun, min(X0), max(X0), add = TRUE, col = 1, lty = 2, lwd = 1)
lines(xgrid, qnorm(0.025, predictions.Het$mean, sqrt(predictions.Het$sd2 + predictions.Het$nugs)), 
      col = 3, lty = 3, lwd = 2)
lines(xgrid, qnorm(0.975, predictions.Het$mean, sqrt(predictions.Het$sd2 + predictions.Het$nugs)), 
      col = 3, lty = 3, lwd = 2)
lines(xgrid, f.sim(xgrid, cpara.Het.OGP), col = 4, lty = 2, lwd = 2)

## variance process
# WLS
curve(var.f, min(X0), max(X0), col = 1, lty = 2, lwd = 1, xlab = "x", ylab = "variance")
mtext("variance", 2, 3, las = 0)
points(X0, sapply(unstack(data.frame(Z,rep(1:length(X0),n.rep))), var), col = 1, pch = 20, cex = 1.2)
mtext("x", 1, 3, las = 0)
# KO
curve(var.f, min(X0), max(X0), col = 1, lty = 2, lwd = 1, xlab = "x", yaxt="n", ylab = "variance")
points(X0, sapply(unstack(data.frame(Z,rep(1:length(X0),n.rep))), var), col = 1, pch = 20, cex = 1.2)
lines(xgrid, predictions.Hom$nugs, col = 2, lwd = 2)
mtext("x", 1, 3, las = 0)
# our model
curve(var.f, min(X0), max(X0), col = 1, lty = 2, lwd = 1, xlab = "x", yaxt="n", ylab = "variance")
points(X0, sapply(unstack(data.frame(Z,rep(1:length(X0),n.rep))), var), col = 1, pch = 20, cex = 1.2)
lines(xgrid, predictions.Het$nugs, col = 2, lwd = 2)
mtext("x", 1, 3, las = 0)

Reproducing Section 4.1: Figure 2

This could take a long time, so the code is not run here.

source("Example 1d_F2.R")

Reproducing Section 4.1: Figure 3

This could take a long time, so the code is not run here.

source("Example 1d_F3.R")

Reproducing Section 4.1: Table 1

This could take a long time, so the code is not run here.

source("Example 1d_T1.R")

Reproducing Section 4.2: Figure 4

This could take a long time, so the code is not run here.

source("Example 3d.R")

Reproducing Section 5: Figures 5 and 6, and Table 2

# computer model
f.sim <- function(x, cpara) {
  return(c(exp(x * cpara)))
}
df.sim <- function(x, cpara) {
  return(c(x*exp(x * cpara)))
}

# setting for lower and upper bounds of parameters
cpara_min <- 0
cpara_max <- 1
cpara_init.vt <- c(2, 5, 8)/10

for(co2.type in c("ambient", "hi")){
  par(mfrow=c(3,3), oma=c(4.5, 4, 3, 2.5), mar=rep(.5, 4))
  exp.data.all <- read.csv(paste0("data/PLGG_growthdata_", co2.type, "CO2.csv"))

  exp.data.ls <- split(exp.data.all[,3:ncol(exp.data.all)], exp.data.all[,2])
  genotype <- names(exp.data.ls)
  genotype[1:2] <- tolower(genotype[1:2])
  xgrid <- matrix(seq(0, 20, length.out = 101), ncol = 1)

  predictions.Het.ls <- vector("list", 3)
  cpara.Het.OGP.vt <- rep(0, 3)
  sd.cpara.vt <- rep(0, 3)
  for(i in 1:3){
    cat("============= CO2 type:", co2.type, ", group:", genotype[i], "=============\n")
    exp.data <- exp.data.ls[[i]]
    X <- exp.data[,1]
    Z <- exp.data[,2]

    n.rep <- sapply(split(Z, X), FUN = function(x) length(x[!is.na(x)]))
    cat("number of replicates of each location:", n.rep, "\n")

    n.timestep <- length(unique(X))
    cat("number of unique locations:", n.timestep, "\n")

    Z <- unlist(split(Z, X))
    Z <- Z[!is.na(Z)]
    X <- rep(unique(X), n.rep)

    X0 <- hetGP::find_reps(X, Z)$X0
    Z0 <- hetGP::find_reps(X, Z)$Z0

    lower <- 0.01 * max(X0)
    upper <- 2.5 * max(X0)

    ## Het with orthogonality 
    model <- vector("list", 3)
    jj <- 0
    for(cpara.init in cpara_init.vt){
      jj <- jj + 1
      model[[jj]] <- mleHetCalibrate(X = X, Z = Z, cpara_max = cpara_max, cpara_min = cpara_min,
                                     lower = lower, upper = upper,
                                     init = list("cpara" = cpara.init),
                                     settings = list(checkHom = FALSE, linkThetas = "none"),
                                     covtype = "Matern5_2", orthogonal = TRUE, f.sim = f.sim, df.sim = df.sim)

    }
    llmax.index <- which.max(sapply(model, function(x) x$ll))
    model <- model[[llmax.index]]

    cpara.Het.OGP <- model$cpara
    cpara.Het.OGP.vt[i] <- cpara.Het.OGP
    cat("parameter estimate:", cpara.Het.OGP, "\n")

    # computer the information matrix
    Info.mx <- computeInfo(model) 
    sd.cpara <- sqrt(diag(Info.mx)[1])
    sd.cpara.vt[i] <- sd.cpara
    cat("confidence interval of parameter: (",
        qnorm(0.025, cpara.Het.OGP, sd.cpara), ", ",
          qnorm(0.975, cpara.Het.OGP, sd.cpara), ")\n")

    # heteroscedastic test
    nmean <- drop(rowSums(model$Kgi) %*% model$Delta / sum(model$Kgi))
    sKgi <- sum(model$Kgi)
    R <- diag(1,n.timestep) - matrix(1,n.timestep,n.timestep) %*% model$Kgi / sKgi
    chi_stat <- drop((model$Delta - nmean) %*% solve(R %*% Info.mx[(nrow(Info.mx)-n.timestep+1):ncol(Info.mx), (nrow(Info.mx)-n.timestep+1):ncol(Info.mx)]%*% t(R) + diag(1e-8, n.timestep))  %*% (model$Delta - nmean))
    het_stat <- (chi_stat - n.timestep)/sqrt(2*n.timestep)
    cat("heteroscedastic test p-value: ", 1-pnorm(het_stat), "\n")

    ## Create a prediction grid and obtain predictions
    predictions.Het.ls[[i]] <- predict(x = xgrid, object =  model)
  }

  ## plot calibration results
  if(co2.type == "ambient") {
    ylim <- c(0,50)
  }else{
    ylim <- c(0,150)
  }
  for(i in 1:3){
    exp.data <- exp.data.ls[[i]]
    X <- exp.data[,1]
    Z <- exp.data[,2]

    n.rep <- sapply(split(Z, X), FUN = function(x) length(x[!is.na(x)]))
    Z <- unlist(split(Z, X))
    Z <- Z[!is.na(Z)]
    X <- rep(unique(X), n.rep)

    X0 <- hetGP::find_reps(X, Z)$X0
    Z0 <- hetGP::find_reps(X, Z)$Z0

    predictions.Het <- predictions.Het.ls[[i]]
    if(i == 1) plot(X, Z, ylab = "Area", xlab = "", xaxt="n" , ylim = ylim)
    else plot(X, Z, ylab = "Area", xlab = "", xaxt="n", yaxt="n", ylim = ylim)
    axis(1, c(5,10,15,20), rep("",4))
    points(X0, Z0, pch = 20, cex = 1.2)
    if(i == 1) mtext("Area", 2, 3, las = 0)
    mtext(genotype[i], 3, 1, las = 0, font = 2)

    ## Display mean predictive surface
    lines(xgrid, predictions.Het$mean, col = 'red', lwd = 2)
    lines(xgrid, f.sim(xgrid, cpara.Het.OGP.vt[i]), col = 4, lty = 2, lwd = 2)
    ## Display 95% prediction intervals
    lines(xgrid, qnorm(0.025, predictions.Het$mean, sqrt(predictions.Het$sd2 + predictions.Het$nugs)),
          col = 3, lty = 3, lwd = 2)
    lines(xgrid, qnorm(0.975, predictions.Het$mean, sqrt(predictions.Het$sd2 + predictions.Het$nugs)),
          col = 3, lty = 3, lwd = 2)

  }

  ## plot variance processes
  if(co2.type == "ambient") {
    ylim <- c(0,150)
  }else{
    ylim <- c(0,3500)
  }
  for(i in 1:3){
    predictions.Het <- predictions.Het.ls[[i]]

    exp.data <- exp.data.ls[[i]]
    X <- exp.data[,1]
    Z <- exp.data[,2]

    n.rep <- sapply(split(Z, X), FUN = function(x) length(x[!is.na(x)]))
    Z <- unlist(split(Z, X))
    Z <- Z[!is.na(Z)]
    X <- rep(unique(X), n.rep)

    X0 <- hetGP::find_reps(X, Z)$X0
    Z0 <- hetGP::find_reps(X, Z)$Z0

    if(i == 1) plot(X0, sapply(unstack(data.frame(Z,X)), var),
                    col = 1, pch = 20, cex = 1.2, ylim = ylim,
                    xaxt="n", ylab = "variance")
    else plot(X0, sapply(unstack(data.frame(Z,X)), var),
              col = 1, pch = 20, cex = 1.2, ylim = ylim,
              xaxt="n", yaxt="n", ylab = "variance")
    axis(1, c(5,10,15,20), rep("",4))
    lines(xgrid, predictions.Het$nugs, col = 2, lwd = 2)
    if(i == 1) mtext("variance", 2, 3, las = 0)

  }

  ## plot discrepancy functions
  if(co2.type == "ambient") {
    ylim <- c(-4,5)
  }else{
    ylim <- c(-4,5)
  }
  for(i in 1:3){
    exp.data <- exp.data.ls[[i]]
    X <- exp.data[,1]
    Z <- exp.data[,2]

    n.rep <- sapply(split(Z, X), FUN = function(x) length(x[!is.na(x)]))
    Z <- unlist(split(Z, X))
    Z <- Z[!is.na(Z)]
    X <- rep(unique(X), n.rep)

    ## WLS estimate
    X0 <- hetGP::find_reps(X, Z)$X0
    Z0 <- hetGP::find_reps(X, Z)$Z0

    predictions.Het <- predictions.Het.ls[[i]]
    if(i == 1) plot(xgrid, predictions.Het$mean - f.sim(xgrid, cpara.Het.OGP.vt[i]), xlab = "day", ylab = "discrepancy", type = "l", col = 2, lwd = 2, ylim = ylim)
    else plot(xgrid, predictions.Het$mean - f.sim(xgrid, cpara.Het.OGP.vt[i]), xlab = "day", ylab = "discrepancy", type = "l", col = 2, lwd = 2, ylim = ylim, yaxt = "n")
    lines(xgrid, qnorm(0.025, predictions.Het$mean - f.sim(xgrid, cpara.Het.OGP.vt[i]), sqrt(predictions.Het$sd2)), col = 3, lty = 3, lwd = 2, ylim = ylim)
    lines(xgrid, qnorm(0.975, predictions.Het$mean - f.sim(xgrid, cpara.Het.OGP.vt[i]), sqrt(predictions.Het$sd2)), col = 3, lty = 3, lwd = 2, ylim = ylim)
    abline(h = 0, lty = 2, col = 1)
    if(i == 1) mtext("discrepancy", 2, 3, las = 0)
    mtext("day", 1, 3, las = 0)
  }
}
## ============= CO2 type: ambient , group: glyk =============
## number of replicates of each location: 3 3 3 3 3 3 3 3 
## number of unique locations: 8 
## parameter estimate: 0.1592016 
## confidence interval of parameter: ( 0.1518043 ,  0.1665988 )
## heteroscedastic test p-value:  0.0003936992 
## ============= CO2 type: ambient , group: plgg =============
## number of replicates of each location: 5 5 5 5 5 5 5 5 
## number of unique locations: 8 
## parameter estimate: 0.1570373 
## confidence interval of parameter: ( 0.1511059 ,  0.1629686 )
## heteroscedastic test p-value:  0.02507054 
## ============= CO2 type: ambient , group: WT =============
## number of replicates of each location: 5 5 5 5 5 5 5 4 
## number of unique locations: 8 
## parameter estimate: 0.1784957 
## confidence interval of parameter: ( 0.170021 ,  0.1869704 )
## heteroscedastic test p-value:  0

## ============= CO2 type: hi , group: glyk =============
## number of replicates of each location: 3 4 4 4 4 4 4 4 
## number of unique locations: 8 
## parameter estimate: 0.2125061 
## confidence interval of parameter: ( 0.1943544 ,  0.2306579 )
## heteroscedastic test p-value:  1.023204e-11 
## ============= CO2 type: hi , group: plgg =============
## number of replicates of each location: 5 5 5 5 5 5 5 5 
## number of unique locations: 8 
## parameter estimate: 0.2416902 
## confidence interval of parameter: ( 0.235146 ,  0.2482344 )
## heteroscedastic test p-value:  0 
## ============= CO2 type: hi , group: WT =============
## number of replicates of each location: 4 5 5 5 5 5 5 5 
## number of unique locations: 8 
## parameter estimate: 0.2297401 
## confidence interval of parameter: ( 0.2199382 ,  0.2395419 )
## heteroscedastic test p-value:  0

Reproducing Section 5: Figure 7

## plot comparison
for(co2.type in c("ambient", "hi")){

  par(mfrow=c(3,3), oma=c(4.5, 4, 1, 2.5), mar=c(0.5,0.5,1.5,0.5))
  exp.data.all <- read.csv(paste0("data/PLGG_growthdata_", co2.type, "CO2.csv"))
  exp.data.ls <- split(exp.data.all[,3:ncol(exp.data.all)], exp.data.all[,2])
  for(i in 1:3){
    cat("============= CO2 type:", co2.type, ", group:", genotype[i], "=============\n")
    exp.data <- exp.data.ls[[i]]
    X <- exp.data[,1]
    Z <- exp.data[,2]

    n.rep <- sapply(split(Z, X), FUN = function(x) length(x[!is.na(x)]))
    Z <- unlist(split(Z, X))
    Z <- Z[!is.na(Z)]
    X <- rep(unique(X), n.rep)

    X0 <- hetGP::find_reps(X, Z)$X0
    Z0 <- hetGP::find_reps(X, Z)$Z0

    ## log linear method
    lm.df <- data.frame(X=X,Z=Z)
    lm.grid.df <- data.frame(X=xgrid)
    lm.fit <- lm(log(Z)~X-1,lm.df)
    lm.pred <- predict(lm.fit, newdata = lm.grid.df,se.fit = TRUE)
    cat("parameter estimate of log linear method:", lm.fit$coefficients, "\n")

    ## traditional method
    cpara.LS <- rep(NA,5)
    for(j in 1:5){
      X.tmp <- exp.data[((j-1)*8+1):(8*j),1]
      Z.tmp <- exp.data[((j-1)*8+1):(8*j),2]
      if(all(is.na(Z.tmp))) next

      X.tmp <- X.tmp[!is.na(Z.tmp)]
      Z.tmp <- Z.tmp[!is.na(Z.tmp)]
      min.index <- which.min(apply(matrix(seq(0,1,length = 100),ncol=1), 1, function(x) optim(x, fn = function(g) sum((Z.tmp - f.sim(X.tmp, g))^2),
                                                                                              lower = 0, upper = 1, method = "L-BFGS-B")$value))

      cpara.LS[j] <- optim(seq(0,1,length = 100)[min.index],
                           fn = function(g) sum((Z.tmp - f.sim(X.tmp, g))^2),
                           lower = 0, upper = 1, method = "L-BFGS-B")$par
    }
    cpara.LS <- mean(cpara.LS, na.rm = TRUE)
    cat("parameter estimate of traditional method:", cpara.LS, "\n")

    ## Het with orthogonality ------------------------------------------------------------
    model <- vector("list", 3)
    jj <- 0
    for(cpara.init in cpara_init.vt){
      jj <- jj + 1
      model[[jj]] <- mleHetCalibrate(X = X, Z = Z, cpara_max = cpara_max, cpara_min = cpara_min,
                                     init = list("cpara" = cpara.init),
                                     lower = lower, upper = upper,
                                     settings = list(checkHom = FALSE, linkThetas = "none"),
                                     covtype = "Matern5_2", orthogonal = TRUE, f.sim = f.sim, df.sim = df.sim)

    }
    llmax.index <- which.max(sapply(model, function(x) x$ll))
    model <- model[[llmax.index]]

    cpara.Het.OGP <- model$cpara
    cat("parameter estimate of our proposed method:", cpara.Het.OGP, "\n")

    ## Create a prediction grid and obtain predictions
    predictions.Het <- predict(x = xgrid, object =  model)

    ##### WLS
    ## plot figures
    plot(X, Z, ylab = "Area", xlab = "day", xaxt="n", cex=1.5)
    if(i != 3) axis(1, c(5,10,15,20), rep("",4)) else axis(1, X0, X0)
    points(X0, Z0, pch = 20, cex = 3)
    mtext(paste(genotype[i], "(traditional)"), 3, 0, las = 0, font = 2)
    mtext("Area", 2, 3, las = 0)

    ## Display mean predictive surface
    lines(xgrid, f.sim(xgrid, cpara.LS), col = 4, lty = 2, lwd = 2)
    if(i == 3) mtext("day", 1, 3, las = 0)

    ##### log transform
    ## plot figures
    plot(X, Z, ylab = "Area", xlab = "day", xaxt="n", yaxt="n", cex=1.5)
    if(i != 3) axis(1, c(5,10,15,20), rep("",4)) else axis(1, X0, X0)
    points(X0, Z0, pch = 20, cex = 3)
    mtext(paste(genotype[i], "(log transformation)"), 3, 0, las = 0, font = 2)
    lines(xgrid, exp(lm.pred$fit), col = 4, lty = 2, lwd = 2)
    lines(xgrid, exp(lm.pred$fit+qnorm(0.975)*lm.pred$se.fit), col = 3, lty = 3, lwd = 2)
    lines(xgrid, exp(lm.pred$fit-qnorm(0.975)*lm.pred$se.fit), col = 3, lty = 3, lwd = 2)
    if(i == 3) mtext("day", 1, 3, las = 0)

    ##### HetOGP
    ## plot figures
    plot(X, Z, ylab = "Area", xlab = "day", xaxt="n", yaxt="n", cex=1.5)
    if(i != 3) axis(1, c(5,10,15,20), rep("",4)) else axis(1, X0, X0)
    points(X0, Z0, pch = 20, cex = 3)
    mtext(paste(genotype[i], "(HetOGP)"), 3, 0, las = 0, font = 2)

    ## Display mean predictive surface
    lines(xgrid, f.sim(xgrid, cpara.Het.OGP), col = 4, lty = 2, lwd = 2)
    ## Display 95% prediction intervals
    lines(xgrid, pmax(0,qnorm(0.025, predictions.Het$mean, sqrt(predictions.Het$sd2 + predictions.Het$nugs))),
          col = 3, lty = 3, lwd = 2)
    lines(xgrid, qnorm(0.975, predictions.Het$mean, sqrt(predictions.Het$sd2 + predictions.Het$nugs)),
          col = 3, lty = 3, lwd = 2)
    if(i == 3) mtext("day", 1, 3, las = 0)

  }
}
## ============= CO2 type: ambient , group: glyk =============
## parameter estimate of log linear method: 0.1660434 
## parameter estimate of traditional method: 0.1554517 
## parameter estimate of our proposed method: 0.1592016

## ============= CO2 type: ambient , group: plgg =============
## parameter estimate of log linear method: 0.1643605 
## parameter estimate of traditional method: 0.1536551 
## parameter estimate of our proposed method: 0.1570373

## ============= CO2 type: ambient , group: WT =============
## parameter estimate of log linear method: 0.1781401 
## parameter estimate of traditional method: 0.1589179 
## parameter estimate of our proposed method: 0.1784957

## ============= CO2 type: hi , group: glyk =============
## parameter estimate of log linear method: 0.1848362 
## parameter estimate of traditional method: 0.1857429 
## parameter estimate of our proposed method: 0.2125061

## ============= CO2 type: hi , group: plgg =============
## parameter estimate of log linear method: 0.2441516 
## parameter estimate of traditional method: 0.2420388 
## parameter estimate of our proposed method: 0.2416902

## ============= CO2 type: hi , group: WT =============
## parameter estimate of log linear method: 0.2198966 
## parameter estimate of traditional method: 0.2159369 
## parameter estimate of our proposed method: 0.2297401