/EpMineEnv

Primary LanguagePythonMIT LicenseMIT

EpMineEnv

任务描述

在固定环境内,根据第一视角图像输入,找到指定目标。

状态:第一视角图像,尺寸为128x128

动作:机器人横向速度、纵向速度和旋转角速度

奖励:机器人到达指定位置会返回+10奖励,在envs/SingleAgent/mine_toy.py中设置了一种简易稠密奖励方式。

对环境的测试可以参考envs/SingleAgent/mine_toy.py文件。

环境配置

使用本地环境(有显示器)

conda create -p python3.8 mine_env
conda activate mine_env
pip install mlagents-envs gym opencv-python==4.5.5.64

根据系统配置和官方文档安装pytorch。

根据Stable-Baseline3官方文档安装强化学习框架。

使用远程服务器(无显示器)

为了使仿真环境支持服务器端的图像渲染,建议使用docker的方式。需要安装nvidia-docker,详细的安装过程建议参考https://github.com/ValerioB88/ml-agents-visual-observations-docker-GPU

我们也提供了已经配置好环境的镜像,上述过程配置完成后,可以直接拉取镜像

docker pull haoranlee/mine_visual_gpu:v0

使用该镜像时,可以将本地的代码和仿真环境所在文件夹映射到docker容器中

docker run -it -e DISPLAY=:0 -v /your/workspace/path:/work/code --network host --runtime=nvidia --privileged --entrypoint /bin/bash haoranlee/mine_visual_gpu:v0

需要注意的是,在有显示器的机器上使用上述docker方式,仍然会弹出程序可视化窗口。

关闭可视化界面

mlagents-envs提供了no-graphics仿真模式,但是在该模式下图像不会被正常渲染。 这里我们提供了一种通过修改mlagents-envs源码的方式,让它们支持不显示可视化窗口。 具体的,找到当前python环境的库安装路径,并找到site-packages/mlagents_envs/environment.py,将第272行 args += ["-nographcis", "-batchmode"] 修改为 args += ["-batchmode"]

然后再代码(envs/SingleAgent/mine_toy.py)中 no_graph = True

需要注意的是,上述修改方式虽然支持关闭可视化窗口,但是在服务器(无显示)端仅修改上述代码而不适用docker的情况下,仍然不能正常渲染图像。

警告:上述代码涉及修改mlagents-envs源码,请谨慎使用。

仿真环境下载

release标签下,下载最新的系统对应的仿真环境,解压到envs/SingleAgent/路径下,并检查envs/SingleAgent/mine_toy.py中的file_name路径是否正确。

在Linux系统下,需要赋予仿真环境drl.x86_64文件可执行权限,具体如下

chmod +x drl.x86_64

训练

python train_ppo.py