zod-prisma-types
is a generator for prisma that generates zod schemas from your prisma models. This includes schemas of models, enums, inputTypes, argTypes, filters and so on. It also provides options to write advanced zod validators directly in the Prisma schema comments.
Since I'm maintaining the generator in my spare time consider buying me a coffee or sponsoring me if you like the project. Thanks!
Be aware that some generator options have been removed, a few new ones have been added, the behavior of custom imports has changed and ts-morph is no longer needed to generate files in v2.0.0.
- If you have used decimal or Json values you might encounter changed behavior in v3.x.x. Please read the decimal and json sections for more information. If not you can safely upgrade to v3.x.x.
- Imports are now generally handled at field level except for model validators. This enables the generator to add the custom validation logic on input type level like
whereUnique
inputs. If you have used custom imports in v2.x.x you should change the syntax to the new one. Please read the custom imports section for more information. validateWhereUniqueInputs
is nowtrue
by default
Since
zod version 3.21.2
some schemas throw a typescript error. Please usezod version 3.21.1
until this issue is resolved. Feel free to add some weight to the issue on github
- zod-prisma-types
- Breaking changes in v2.x.x
- Breaking changes in v3.x.x
- Known issues
- Table of contents
- About this project
- Installation
- Usage
useMultipleFiles
output
writeBarrelFiles
createInputTypes
createModelTypes
addInputTypeValidation
addIncludeType
addSelectType
validateWhereUniqueInput
createOptionalDefaultValuesTypes
createRelationValuesTypes
createPartialTypes
useDefaultValidators
coerceDate
writeNullishInModelTypes
prismaClientPath
- Skip schema generation
- Custom Enums
- Json null values
- Decimal
- Field validators
- Custom type error messages
- String validators
- Number validators
- BigInt validators
- Date validators
- Custom validators
- Array validators
- Omit Fields
- Validation errors
- Model validators
- Custom model error messages
- Custom model validators
- Naming of zod schemas
- Adding comments
- Migration from
zod-prisma
For one of my projects I was in need of a generator that offers the possibility of adding zod validators
directly in prisma schema's
rich-comments and generates zod
schemas for all prisma models, enums, inputTypes, argTypes, filters and so on. I also wanted to be able to import these schemas in the frontend e.g. for form validation and make the generator as flexible as possible so it covers a large range of use cases. Since there were no generators out there that met my requirements or they weren't actively maintained anymore I decided to write zod-prisma-type
.
via npm:
npm install zod-prisma-types
via yarn:
yarn add zod-prisma-types
via pnpm:
pnpm add zod-prisma-types
Supports prisma 4.x - 5.x
Just add the following code to your prisma.schema
file to create a single index.ts
file in the ./generated/zod
output folder containing all the zod prisma schemas.
generator zod {
provider = "zod-prisma-types"
}
Then import the schema's into your file:
import { mySchema } from '/prisma/generated/zod'; // All schemas are here by default, use the 'output' option to change it
If you encounter errors like the following
/bin/sh: zod-prisma-types: command not found
please try to use thenpx
command with thezod-prisma-types
command.
generator zod {
provider = "npx zod-prisma-types"
}
If you want to customize the behavior of the generator you can use the following options:
generator zod {
provider = "ts-node-dev ../generator/src/bin.ts"
output = "./generated/zod" // default is ./generated/zod
useMultipleFiles = true // default is false
writeBarrelFiles = false // default is true
createInputTypes = false // default is true
createModelTypes = false // default is true
addInputTypeValidation = false // default is true
addIncludeType = false // default is true
addSelectType = false // default is true
validateWhereUniqueInput = true // default is false
createOptionalDefaultValuesTypes = true // default is false
createRelationValuesTypes = true // default is false
createPartialTypes = true // default is false
useDefaultValidators = false // default is true
coerceDate = false // default is true
writeNullishInModelTypes = true // default is false
prismaClientPath = "./path/to/prisma/client" // default is client output path
}
default:
false
If you want to create multiple files instead of a single index.ts
file you can set this option to true
. This will create a file for each model, enum, inputType, argType, filter, etc. The files will be created in sub folders in the specified output folder and a barrel file will be added at the root of the output folder.
generator zod {
// ...rest of config
useMultipleFiles = false
}
default:
./generated/zod
Provide an alternative output path.
default:
true
If you use useMultipleFiles
and do not want to create a barrel file for each sub folder you can set this option to false
. This will create an index.ts
file in each sub folder that exports all the files in the folder. This option may be beneficial for typescript performance on big schemas.
generator zod {
// ...rest of config
writeBarrelFiles = false
}
default:
true
If you just want to create zod schemas for your models and enums you can disable the creation of the corresponding input types. This may be useful if you just want to use zod schemas of your models for validating input types in react-hook-form
or some similar use cases.
generator zod {
// ...rest of config
createInputTypes = false
}
default:
true
If you just want to create zod schemas for your input types you can disable the creation of the corresponding model schemas. This may be useful if you just want to use the zod input schemas for autocompletion in your trpc queries or similar use cases.
generator zod {
// ...rest of config
createModelTypes = false
}
default:
true
If you want to use your custom zod validators that you added via rich-comments only on your generated model schemas but not on your created input type schemas (UserCreateInput
, UserUpdateManyInput
, etc.) you can disable this feature.
generator zod {
// ...rest of config
addInputTypeValidation = false
}
default:
true
By default the include type is added to the [Model]ArgTypeSchema
. If you don't want to add a zod schema for the include
type you can set this option to false
.
generator zod {
// ...rest of config
addIncludeType = false
}
default:
true
By default the select type is added to the [Model]ArgTypeSchema
. If you don't want to add a zod schema for the select
type you can set this option to false
.
generator zod {
// ...rest of config
addSelectType = false
}
default:
false
By default the generator will not validate the whereUnique
input types in multifile mode since a bunch of unused imports will often be generated. If you want to validate the whereUnique
input types you can set this option to true
.
Be aware that this can lead to eslint errors if you use the
no-unused-vars
rule which you need to resolve manually.
generator zod {
// ...rest of config
validateWhereUniqueInput = true
}
default:
false
If you want to have a schema of your model where fields with default values are marked as .optional()
you can pass the following config option:
generator zod {
// ...rest of config
createOptionalDefaultValuesTypes = true
}
model ModelWithDefaultValues {
id Int @id @default(autoincrement())
string String @default("default")
otherString String
int Int @default(1)
otherInt Int
float Float @default(1.1)
otherFloat Float
boolean Boolean @default(true)
otherBool Boolean
date DateTime @default(now())
otherDate DateTime
}
The above model would then generate the following model schemas:
export const ModelWithDefaultValuesSchema = z.object({
id: z.number(),
string: z.string(),
otherString: z.string(),
int: z.number(),
otherInt: z.number(),
float: z.number(),
otherFloat: z.number(),
boolean: z.boolean(),
otherBool: z.boolean(),
date: z.date(),
otherDate: z.date(),
});
export const ModelWithDefaultValuesOptionalDefaultsSchema =
ModelWithDefaultValuesSchema.merge(
z.object({
id: z.number().optional(),
string: z.string().optional(),
int: z.number().optional(),
float: z.number().optional(),
boolean: z.boolean().optional(),
date: z.date().optional(),
}),
);
default:
false
If you need a separate model type that includes all the relation fields you can pass the following option. Due to the type annotation, that is needed to have recursive types, this model has some limitations since z.ZodType<myType>
does not allow some object methods like .merge()
, .omit()
, etc.
generator zod {
// ...rest of config
createRelationValuesTypes = true
}
model User {
id String @id @default(cuid())
email String @unique
name String?
posts Post[]
profile Profile?
role Role[] @default([USER, ADMIN])
enum AnotherEnum @default(ONE)
scalarList String[]
lat Float
lng Float
location Location? @relation(fields: [lat, lng], references: [lat, lng])
}
The above model would generate the following model schemas:
export const UserSchema = z.object({
role: RoleSchema.array(),
enum: AnotherEnumSchema,
id: z.string().cuid(),
email: z.string(),
name: z.string().optional(),
scalarList: z.string().array(),
lat: z.number(),
lng: z.number(),
});
export type UserRelations = {
posts: PostWithRelations[];
profile?: ProfileWithRelations | null;
location?: LocationWithRelations | null;
};
export type UserWithRelations = z.infer<typeof UserSchema> & UserRelations;
export const UserWithRelationsSchema: z.ZodType<UserWithRelations> =
UserSchema.merge(
z.object({
posts: z.lazy(() => PostWithRelationsSchema).array(),
profile: z.lazy(() => ProfileWithRelationsSchema).nullish(),
location: z.lazy(() => LocationWithRelationsSchema).nullish(),
}),
);
If the option is combined with createOptionalDefaultValuesTypes
additionally the following model schemas are generated:
export type UserOptionalDefaultsWithRelations = z.infer<
typeof UserOptionalDefaultsSchema
> &
UserRelations;
export const UserOptionalDefaultsWithRelationsSchema: z.ZodType<UserOptionalDefaultsWithRelations> =
UserOptionalDefaultsSchema.merge(
z.object({
posts: z.lazy(() => PostWithRelationsSchema).array(),
profile: z.lazy(() => ProfileWithRelationsSchema).nullable(),
location: z.lazy(() => LocationWithRelationsSchema).nullable(),
target: z.lazy(() => LocationWithRelationsSchema).nullable(),
}),
);
default:
false
If you need a separate model type that includes all the fields as optional you can pass the following option.
generator zod {
// ...rest of config
createPartialTypes = true
}
model User {
id String @id @default(cuid())
email String @unique
name String?
posts Post[]
profile Profile?
role Role[] @default([USER, ADMIN])
enum AnotherEnum @default(ONE)
scalarList String[]
lat Float
lng Float
location Location? @relation(fields: [lat, lng], references: [lat, lng])
}
The above model would generate the following model schemas:
export const UserPartialSchema = z
.object({
role: RoleSchema.array(),
enum: AnotherEnumSchema,
id: z.string().cuid(),
email: z.string().email({ message: 'Invalid email address' }),
name: z.string().min(1).max(100).nullable(),
scalarList: z.string().array(),
lat: z.number(),
lng: z.number(),
})
.partial();
When using this option in combination with createRelationValuesTypes
the following model schemas are also generated. Due do the type annotation, that is needed to have recursive types, this model has some limitations since z.ZodType<myType>
does not allow some object methods like .merge()
, .omit()
, etc.
export type UserPartialRelations = {
posts?: PostPartialWithRelations[];
profile?: ProfilePartialWithRelations | null;
location?: LocationPartialWithRelations | null;
};
export type UserPartialWithRelations = z.infer<typeof UserPartialSchema> &
UserPartialRelations;
export const UserPartialWithRelationsSchema: z.ZodType<UserPartialWithRelations> =
UserPartialSchema.merge(
z.object({
posts: z.lazy(() => PostPartialWithRelationsSchema).array(),
profile: z.lazy(() => ProfilePartialWithRelationsSchema).nullable(),
location: z.lazy(() => LocationPartialWithRelationsSchema).nullable(),
}),
).partial();
export type UserPartial = z.infer;
default:
true
In certain use cases the generator adds default validators:
model WithDefaultValidators {
id String @id @default(cuid())
idTwo String @default(uuid())
integer Int
}
export const WithDefaultValidatorsSchema = z.object({
id: z.string().cuid(),
idTwo: z.string().uuid(),
integer: z.number().int(),
});
These defaults are overwritten when using a custom validator (see: Field Validators) or when you opt out of using a default validator on a specific field:
model WithDefaultValidators {
id String @id @default(cuid()) /// @zod.string.noDefault()
idTwo String @default(uuid()) /// @zod.string.noDefault()
integer Int /// @zod.number.noDefault()
}
export const WithDefaultValidatorsSchema = z.object({
id: z.string(),
idTwo: z.string(),
integer: z.number(),
});
You can opt out of this feature completly by passing false to the config option.
generator zod {
// ...rest of config
useDefaultValidators = false
}
More default validators are planned in future releases (by checking the @db. fields in the schema). If you have some ideas for default validators feel free to open an issue.
default: true
Per default DateTime
values are coerced to Date
objects as long as you pass in a valid ISO string
or an instance of Date
. You can change this behavior to generate a simple z.date()
by passing the following option to the generator config:
generator zod {
// ...rest of config
coerceDate = false
}
default: false
By default the generator just writes .nullable()
in the modelTypes when a field in the Prisma type is nullable. If you want these fields to accept null | undefined
, which would be represented by .nullish()
in the schema, you can pass the following option to the generator config:
generator zod {
// ...rest of config
writeNullishInModelTypes = true
}
default:
inferred from prisma schema path
By default the prisma client path is inferred from the output
path provided in the prisma.schema
file under generator client
. If you still need to use a custom path you can pass it to the generator config via this option. A custom path takes precedence over the inferred prisma client output path.
generator zod {
// ...rest of config
prismaClientPath = "./path/to/prisma/client"
}
You can skip schema generation based on e.g. the environment you are currently working in. For example you can only generate the schemas when you're in development
but not when you run generation in production
(because in production
the schemas would already have been created and pushed to the server via your git repo). To skip generation in an environment just add the following environment variable
to your respective .env
files:
SKIP_ZOD_PRISMA = 'true';
For custom enums a separate type is generated that represents the enum values as a union. Since in typescript unions are more useful than enums this can come in handy.
enum MyEnum {
A
B
C
}
export const MyEnumSchema = z.nativeEnum(PrismaClient.MyEnum);
export type MyEnumType = `${z.infer<typeof MyEnumSchema>}`; // union of "A" | "B" | "C"
When using json null values prisma has a unique way of handling Database NULL
and JSON null
as stated in the Docs.
To adhere to this concept you can pass "DbNull"
or "JsonNull"
as string to a nullable Json field. When the schema gets validated these strings are transformed to Prisma.DbNull
or Prisma.JsonNull
to satisfy the prisma.[myModel].create() | .update() | ...
functions.
This transformation is only applicable for input schemas like
[myModel]CreateInputSchema, [myModel]UpdateInputSchema, ...
. Since the model schemas represent the return value from the database - they can havenull
values - they are not affected by this transformation.
const parsedJsonSchema = myJsonSchema.parse({
myJsonField: 'DbNull', // or "JsonNull"
});
// will be transformed to:
const parsedJsonSchema = {
myJsonField: Prisma.DbNull, // or Prisma.JsonNull
};
Decimals are a special case since they are not supported by zod
out of the box. Therefore the generator utilizes the Prisma.Decimal
class and the DecimalJsLike
type from the @prisma/client
package and - if installed - the decimal.js
package.
A downside of this approach is that
Prisma
can't be simply imported as a type anymore because it is used to determine if an instance ofPrisma.Decimal
is passed in.
When using Decimal a refine
method is used to validate if the input adheres to the prisma input union string | number | Decimal | DecimalJsLike
.
model MyModel {
id Int @id @default(autoincrement())
decimal Decimal
}
The above model would generate the following helper schemas that are used to validate the input in the create
and update
methods:
// DECIMAL HELPERS
//------------------------------------------------------
export const DecimalJSLikeSchema: z.ZodType<Prisma.DecimalJsLike> = z.object({
d: z.array(z.number()),
e: z.number(),
s: z.number(),
toFixed: z.function(z.tuple([]), z.string()),
});
export const DECIMAL_STRING_REGEX = /^[0-9.,e+-bxffo_cp]+$|Infinity|NaN/;
export const isValidDecimalInput = (
v?: null | string | number | Prisma.DecimalJsLike,
): v is string | number | Prisma.DecimalJsLike => {
if (v === undefined || v === null) return false;
return (
(typeof v === 'object' &&
'd' in v &&
'e' in v &&
's' in v &&
'toFixed' in v) ||
(typeof v === 'string' && DECIMAL_STRING_REGEX.test(v)) ||
typeof v === 'number'
);
};
The input schemas reflect the types that are passed to prismas create
and update
methods.
These schemas further validate the input and throw an error if the input is not valid. A downside of this approach is that Prisma can't be simply imported as a type anymore because it is used to determine if an instance of Prisma.Decimal
is passed in.
If
decimal.js
is installed the schema also validates if the input is a validdecimal.js
instance.
// INPUT TYPES
//------------------------------------------------------
import { Prisma } from '@prisma/client'; // can't be imported as type because of "instance of Prisma.Decimal" check
import Decimal from 'decimal.js'; // gets added if installed
import { z } from 'zod';
import { isValidDecimalInput } from './isValidDecimalInput';
import { DecimalJSLikeSchema } from './DecimalJsLikeSchema';
export const DecimalModelCreateInputSchema: z.ZodType<Prisma.DecimalModelCreateInput> =
z
.object({
decimal: z
.union([
z.number(),
z.string(),
z.instanceof(Decimal),
z.instanceof(Prisma.Decimal),
DecimalJSLikeSchema,
])
.refine((v) => isValidDecimalInput(v), {
message: 'Must be a Decimal',
}),
decimalOpt: z
.union([
z.number(),
z.string(),
z.instanceof(Decimal),
z.instanceof(Prisma.Decimal),
DecimalJSLikeSchema,
])
.refine((v) => isValidDecimalInput(v), { message: 'Must be a Decimal' })
.optional()
.nullable(),
})
.strict();
The model schema only reflects the type of the result of a database query. Therefor this type lacks all the further validation that is used in the create
and update
methods. So if you want to validate the input in the create
and update
methods you should use the input schemas instead of the model schemas or build your own custom schema using the helpers from above.
// SCHEMA
//------------------------------------------------------
import { Prisma } from '@prisma/client';
export const DecimalModelSchema = z.object({
id: z.number().int(),
decimal: z.instanceof(Prisma.Decimal, {
message:
"Field 'decimal' must be a Decimal. Location: ['Models', 'DecimalModel']",
}),
decimalOpt: z
.instanceof(Prisma.Decimal, {
message:
"Field 'decimalOpt' must be a Decimal. Location: ['Models', 'DecimalModel']",
})
.nullable(),
});
// this schema reflects the following prisma type generated in prisma version 5.4.2:
export type DecimalModel =
$Result.DefaultSelection<Prisma.$DecimalModelPayload>;
export type $DecimalModelPayload<
ExtArgs extends $Extensions.InternalArgs = $Extensions.DefaultArgs,
> = {
name: 'DecimalModel';
objects: {};
scalars: $Extensions.GetPayloadResult<
// this part of the type is reflected in the model schema
{
id: number;
decimal: Prisma.Decimal;
decimalOpt: Prisma.Decimal | null;
},
ExtArgs['result']['decimalModel']
>;
composites: {};
};
It is possible to add zod validators in the comments of the prisma.schema
file with the following syntax (use rich-comments ///
instead of //
).
myField [prisma-scalar-type] /// @zod.[zod-type + optional[(zod-error-messages)]].[zod validators for scalar-type]
This may look a bit cryptic so here is an example:
generator zod {
provider = "zod-prisma-types"
output = "./zod"
}
/// @zod.import(["import { myFunction } from 'mypackage';"])
model MyPrismaScalarsType {
/// @zod.string({ invalid_type_error: "some error with special chars: some + -*#'substring[]*#!§$%&/{}[]", required_error: "some other", description: "some description" }).cuid()
id String @id @default(cuid())
/// Some comment about string @zod.string.min(3, { message: "min error" }).max(10, { message: "max error" })
string String?
/// @zod.custom.use(z.string().refine((val) => validator.isBIC(val), { message: 'BIC is not valid' }))
bic String?
/// @zod.number.lt(10, { message: "lt error" }).gt(5, { message: "gt error" })
float Float
floatOpt Float?
/// @zod.number.int({ message: "error" }).gt(5, { message: "gt error" })
int Int
intOpt Int?
decimal Decimal
decimalOpt Decimal?
date DateTime @default(now())
dateOpt DateTime? /// @zod.date({ invalid_type_error: "wrong date type" }) bigInt BigInt /// @zod.bigint({ invalid_type_error: "error" })
bigIntOpt BigInt?
/// @zod.custom.use(z.lazy(() => InputJsonValue).refine((val) => myFunction(val), { message: 'Is not valid' }))
json Json
jsonOpt Json?
bytes Bytes /// @zod.custom.use(z.instanceof(Buffer).refine((val) => val ? true : false, { message: 'Value is not valid' }))
bytesOpt Bytes?
/// @zod.custom.use(z.string().refine((val) => myFunction(val), { message: 'Is not valid' }))
custom String?
exclude String? /// @zod.custom.omit(["model", "input"])
updatedAt DateTime @updatedAt
}
This example generates the following zod schema for the model in prisma/zod/index.ts
:
import { z } from 'zod';
import * as PrismaClient from '@prisma/client';
import validator from 'validator';
import { myFunction } from 'mypackage';
export const MyPrismaScalarsTypeSchema = z.object({
id: z
.string({
invalid_type_error:
"some error with special chars: some + -*#'substring[]*#!§$%&/{}[]",
required_error: 'some other',
description: 'some description',
})
.cuid(),
/**
* Some comment about string
*/
string: z
.string()
.min(3, { message: 'min error' })
.max(10, { message: 'max error' })
.nullish(),
bic: z
.string()
.refine((val) => validator.isBIC(val), { message: 'BIC is not valid' })
.nullish(),
float: z
.number()
.lt(10, { message: 'lt error' })
.gt(5, { message: 'gt error' }),
floatOpt: z.number().nullish(),
int: z.number().int({ message: 'error' }).gt(5, { message: 'gt error' }),
intOpt: z.number().int().nullish(),
decimal: z
.union([
z.number(),
z.string(),
z.instanceof(PrismaClient.Prisma.Decimal),
DecimalJSLikeSchema,
])
.refine((v) => isValidDecimalInput(v), {
message: 'Field "decimal" must be a Decimal',
path: ['Models', 'MyPrismaScalarsType'],
}),
decimalOpt: z
.union([
z.number(),
z.string(),
z.instanceof(PrismaClient.Prisma.Decimal),
DecimalJSLikeSchema,
])
.refine((v) => isValidDecimalInput(v), {
message: 'Field "decimalOpt" must be a Decimal',
path: ['Models', 'MyPrismaScalarsType'],
})
.nullish(),
date: z.coerce.date(),
dateOpt: z.coerce.date({ invalid_type_error: 'wrong date type' }).nullish(),
bigIntOpt: z.bigint().nullish(),
json: z
.lazy(() => InputJsonValue)
.refine((val) => myFunction(val), { message: 'Is not valid' }),
jsonOpt: NullableJsonValue.optional(),
bytes: z
.instanceof(Buffer)
.refine((val) => (val ? true : false), { message: 'Value is not valid' }),
bytesOpt: z.instanceof(Buffer).nullish(),
custom: z
.string()
.refine((val) => myFunction(val), { message: 'Is not valid' })
.nullish(),
// omitted: exclude: z.string().nullish(),
updatedAt: z.date(),
});
export type MyPrismaScalarsType = z.infer<typeof MyPrismaScalarsTypeSchema>;
export const MyPrismaScalarsTypeOptionalDefaultsSchema =
MyPrismaScalarsTypeSchema.merge(
z.object({
id: z
.string({
invalid_type_error:
"some error with special chars: some + -*#'substring[]*#!§$%&/{}[]",
required_error: 'some other',
description: 'some description',
})
.cuid()
.optional(),
date: z.date().optional(),
updatedAt: z.date().optional(),
}),
);
Additionally all the zod schemas for the prisma input-, enum-, filter-, orderBy-, select-, include and other necessary types are generated ready to be used in e.g.
trpc
inputs.
To add custom zod-type error messages to your validator you can add them via @zod.[key]({ ...customTypeErrorMessages }).[validator key]
. The custom error messages must adhere to the following type:
type RawCreateParams =
| {
invalid_type_error?: string;
required_error?: string;
description?: string;
}
| undefined;
For example:
model MyModel {
myField String /// @zod.string({ invalid_type_error: "invalid type error", required_error: "is required", description: "describe the error" })
}
This would result in an output like this:
string: z.string({
invalid_type_error: 'invalid type error',
required_error: 'is required',
description: 'describe the error',
}),
If you use the wrong key or have a typo the generator will throw an error:
model MyModel {
myField String /// @zod.string({ required_error: "error", invalid_type_errrrrror: "error"})
}
[@zod generator error]: Custom error key 'invalid_type_errrrrror' is not valid. Please check for typos! [Error Location]: Model: 'Test', Field: 'myField'.
To add custom validators to the prisma String
field you can use the @zod.string
key. On this key you can use all string-specific validators that are mentioned in the zod-docs
. You can also add a custom error message to each validator as stated in the docs.
model MyModel {
myField String /// @zod.string.min(3, { message: "min error" }).max(10, { message: "max error" }).[...chain more validators]
}
To add custom validators to the prisma Int
or Float
field you can use the @zod.number
key. On this key you can use all number-specific validators that are mentioned in the zod-docs
. You can also add a custom error message to each validator as stated in the docs.
model MyModel {
myField Int
/// @zod.number.lt(10, { message: "lt error" }).gt(5, { message: "gt error" }).[...chain more validators]
}
To add custom validators to the prisma BigInt
field you can use the @zod.bigint
key. On this key you can use all string-specific validators that are mentioned in the zod-docs
. You can also add a custom error message to each validator as stated in the docs.
model MyModel {
myField BigInt /// @zod.bigint.lt(5n, { message: "lt error" }).gt(6n, { message: "gt error" })({ invalid_type_error: "error", ... }).[...chain more validators]
}
To add custom validators to the prisma DateTime
field you can use the @zod.date
key. On this key you can use all date-specific validators that are mentioned in the zod-docs
. You can also add a custom error message to each validator as stated in the docs.
model MyModel {
myField DateTime /// @zod.date.min(new Date('2020-01-01')).max(new Date('2020-12-31'))
}
To add custom validators to any Prisma Scalar
field you can use the @zod.custom.use()
key. This key has only the .use(...your custom code here)
validator. This code overwrites all other standard implementations so you have to specify the zod type
and how it should be written by the generator. Only .optional()
and .nullable()
are added automatically based on your prisma schema type definition. This field is intended to provide validators like zod .refine
or .transform
on your fields.
model MyModel {
id Int @id @default(autoincrement())
custom String? /// @zod.custom.use(z.string().refine(val => validator.isBIC(val)).transform(val => val.toUpperCase()))
}
The above model schema would generate the following zod schema:
export const MyModel = z.object({
id: z.number(),
custom: z
.string()
.refine((val) => validator.isBIC(val))
.transform((val) => val.toUpperCase())
.nullable(),
});
To add custom validators to list fields you can use the z.[key].array(.length(2).min(1).max(2).nonempty())
validator. You can use this validator on @zod.string
, @zod.number
, @zod.bigint
, @zod.date
and @zod.custom
. Furthermore, you can use it on enums with the @zod.enum.array(...)
key and on relations with the @zod.object.array(...)
key. You can also add a custom error message to each validator as stated in the docs.
model MyModel {
id Int @id @default(autoincrement())
string String[] /// @zod.string.array(.length(2, { message: "my message" }).min(1, { message: "my message" }).max(2, { message: "my message" }).nonempty({ message: "my message" }))
number Int[] /// @zod.number.array(.length(2).min(1).max(2).nonempty())
bigint BigInt[] /// @zod.bigint.array(.length(2).min(1).max(2).nonempty())
date DateTime[] /// @zod.date.array(.length(2).min(1).max(2).nonempty())
custom String[] /// @zod.custom.use(z.string().refine(val => validator.isBIC(val)).transform(val => val.toUpperCase())).array(.length(2).min(1).max(2).nonempty())
enum MyEnum[] /// @zod.enum.array(.length(2).min(1).max(2).nonempty())
object MyObject[] /// @zod.object.array(.length(2).min(1).max(2).nonempty())
}
The above model schema would generate the following zod schema:
export const MyModel = z.object({
id: z.number(),
string: z
.string()
.array()
.length(2, { message: 'my message' })
.min(1, { message: 'my message' })
.max(2, { message: 'my message' })
.nonempty({ message: 'my message' }),
number: z.number().array().length(2).min(1).max(2).nonempty(),
bigint: z.bigint().array().length(2).min(1).max(2).nonempty(),
date: z.date().array().length(2).min(1).max(2).nonempty(),
custom: z
.string()
.refine((val) => validator.isBIC(val))
.transform((val) => val.toUpperCase())
.array()
.length(2)
.min(1)
.max(2)
.nonempty(),
enum: MyEnumSchema.array().length(2).min(1).max(2).nonempty(),
});
It is possible to omit fields in the generated zod schemas by using @zod.custom.omit(["model", "input"])
. When passing both keys "model"
and "input"
the field is omitted in both, the generated model schema and the generated input types (see example below). If you just want to omit the field in one of the schemas just provide the matching key. You can also write the keys without "
or '
.
model MyModel {
id Int @id @default(autoincrement())
string String? /// @zod.string.min(4).max(10)
omitField String? /// @zod.custom.omit([model, input])
omitRequired String /// @zod.custom.omit([model, input])
}
The above model would generate the following zod schemas (the omitted keys are left in the model but are commented out so you see at a glance which fields are omitted when looking on the zod schema):
// MODEL TYPES
// ---------------------------------------
export const MyModelSchema = z.object({
id: z.number(),
string: z.string().min(4).max(10).nullish(),
// omitted: omitField: z.string().nullish(),
// omitted: omitRequired: z.string(),
});
// INPUT TYPES
// ---------------------------------------
export const MyModelCreateInputSchema: z.ZodType<
Omit<PrismaClient.Prisma.MyModelCreateInput, 'omitField' | 'omitRequired'>
> = z
.object({
string: z.string().min(4).max(10).optional().nullable(),
// omitted: omitField: z.string().optional().nullable(),
// omitted: omitRequired: z.string(),
})
.strict();
export const MyModelUncheckedCreateInputSchema: z.ZodType<
Omit<
PrismaClient.Prisma.MyModelUncheckedCreateInput,
'omitField' | 'omitRequired'
>
> = z
.object({
id: z.number().optional(),
string: z.string().min(4).max(10).optional().nullable(),
// omitted: omitField: z.string().optional().nullable(),
// omitted: omitRequired: z.string(),
})
.strict();
export const MyModelUpdateInputSchema: z.ZodType<
Omit<PrismaClient.Prisma.MyModelUpdateInput, 'omitField' | 'omitRequired'>
> = z
.object({
string: z
.union([
z.string().min(4).max(10),
z.lazy(() => NullableStringFieldUpdateOperationsInputSchema),
])
.optional()
.nullable(),
// omitted: omitField: z.union([ z.string(),z.lazy(() => NullableStringFieldUpdateOperationsInputSchema) ]).optional().nullable(),
// omitted: omitRequired: z.union([ z.string(),z.lazy(() => StringFieldUpdateOperationsInputSchema) ]).optional(),
})
.strict();
// AND SO ON...
// ARG TYPES
// ---------------------------------------
// To be compatible with the inputTypes the type of the `ArgSchema` is updated accordingly
export const MyModelCreateArgsSchema: z.ZodType<
Omit<PrismaClient.Prisma.MyModelCreateArgs, 'data'> & {
data:
| z.infer<typeof MyModelCreateInputSchema>
| z.infer<typeof MyModelUncheckedCreateInputSchema>;
}
> = z
.object({
select: MyModelSelectSchema.optional(),
data: z.union([
MyModelCreateInputSchema,
MyModelUncheckedCreateInputSchema,
]),
})
.strict();
When a
required
field is omitted the field needs to be added manually in the respective prisma function likecreate
,update
,createMany
and so on. Otherwise, Typescript would complain.
const appRouter = t.router({
createMyModel: t.procedure
.input(MyModelCreateArgsSchema) // field `omitRequired` is not included in `data`
.query(({ input }) => {
return prisma.myModel.create({
...input,
data: {
...input.data,
omitRequired: 'foo', // field needs to be added manually
},
});
}),
});
To ease the developer experience the generator checks if the provided @zod.[key]
can be used on the respective type of the model field. It also checks if the @zod.[key].[validator]
can be used on the specified @zod.[key]
The generator throws an error if you use a validator key like @zod.string
on the wrong prisma type.
model MyModel {
string String /// @zod.string.min(3) -> valid - `string` can be used on `String`
number Number /// @zod.string.min(3) -> invalid - `string` can not be used on `Number`
}
For the above example the Error message would look like this:
[@zod generator error]: Validator 'string' is not valid for type 'Int'. [Error Location]: Model: 'MyModel', Field: 'number'
The generator provides the exact location, what went wrong and where the error happened. In big prisma schemas with hundreds of models and hundreds of custom validation strings this can come in handy.
The generator throws an error if you use a validator .min
on the wrong validator key.
model MyModel {
number Int /// @zod.number.min(3) -> invalid - `min` can not be used on `number`
}
The above example would throw the following error:
[@zod generator error]: Validator 'min' is not valid for type 'Int'. [Error Location]: Model: 'MyModel', Field: 'number'.
If you have typos in your validator strings like
model MyModel {
string String /// @zod.string.min(3, { message: 'Must be at least 3 characters' })
}
that the generator would throw the following error:
[@zod generator error]: Could not match validator 'min' with validatorPattern
'.min(3, { mussage: 'Must be at least 3 characters' })'. Please check for typos! [Error Location]: Model: 'MyModel', Field: 'string'.
To add custom validators to the prisma model
you can use the @zod.
key on the model. On this key you can use all object
and schema
validators that are mentioned in the zod-docs
.
You can also add custom error messages to the object and add custom imports.
/// @zod.import(["import { myFunction } from "../../../../utils/myFunction";"]).error({ required_error: "error", invalid_type_error: "error" , description: "error"}).refine((data) => { return true }, { message: "error" }).strict()
model ModelWithOptions {
id Int @id @default(autoincrement())
string String
}
The above model would generate the following zod schema:
/////////////////////////////////////////
// MODEL WITH OPTIONS SCHEMA
/////////////////////////////////////////
export const ModelWithOptionsSchema = z.object(
{
id: z.number().int(),
string: z.string(),
},
{
required_error: 'error',
invalid_type_error: 'error',
description: 'error',
},
);
export type ModelWithOptions = z.infer<typeof ModelWithOptionsSchema>;
/////////////////////////////////////////
// MODEL WITH OPTIONS CUSTOM VALIDATORS SCHEMA
/////////////////////////////////////////
export const ModelWithOptionsCustomValidatorsSchema =
ModelWithOptionsSchema.strict().refine(
(data) => {
return true;
},
{ message: 'error' },
);
export type ModelWithOptionsCustomValidators = z.infer<
typeof ModelWithOptionsCustomValidatorsSchema
>;
To add custom imports to your validator you can add them via @zod.import([...myCustom imports as strings])
in Prismas rich comments on the model or the field definition.
For example custom imports on the model level would look like this:
/// @zod.import(["import { myFunction } from 'mypackage'"]).refine((val) => myFunction(val), { message: 'Is not valid' })
model MyModel {
myField String /// @zod.string()
}
This would result in an output like this:
import { myFunction } from 'mypackage';
export const MyModelSchema = z
.object({
myField: z.string(),
})
.refine((val) => myFunction(val), { message: 'Is not valid' });
These custom imports are only used on the generated model schemas and not on the input type schemas. If you want to add custom imports to the generated input type schemas too you can add them to the field definition like this:
model ModelWithFieldLevelImport {
myField String ///@zod.import(["import { myFunction } from 'mypackage'"]).custom.use(z.string().refine((val) => myFunction(val), { message: 'Is not valid' }))
}
This would result in an output like this:
import { myFunction } from 'mypackage';
// MODEL SCHEMA
// ---------------------------------------
export const ModelWithFieldLevelImportSchema = z.object({
myField: z
.string()
.refine((val) => myFunction(val), { message: 'Is not valid' })
.optional()
.nullable(),
});
// INPUT SCHEMA
import { myFunction } from '../../../../utils/myFunction';
export const ModelWithFieldLevelImportCreateInputSchema: z.ZodType<Prisma.ModelWithFieldLevelImportCreateInput> =
z
.object({
myField: z
.string()
.refine((val) => myFunction(val), { message: 'Is not valid' }),
})
.strict();
With this approach you can use
The downside of this approach is that
Please be aware that you have to add an additional level to relative imports if you use the
useMultipleFiles
option.
To add custom zod-type error messages to your model schema you can add them via @zod.error({ ...customTypeErrorMessages })
. The custom error messages must adhere to the following type:
type RawCreateParams =
| {
invalid_type_error?: string;
required_error?: string;
description?: string;
}
| undefined;
For example:
/// @zod.error({ required_error: "error", invalid_type_error: "error" , description: "error"})
model MyModel {
myField String
}
This would result in an output like this:
export const MyModelSchema = z.object(
{
myField: z.string(),
},
{
required_error: 'error',
invalid_type_error: 'error',
description: 'error',
},
);
To add custom validators to the prisma model
you can use the @zod.
key on the model. On this key you can use all object
and schema
validators that are mentioned in the zod-docs
.
/// @zod.refine((data) => { return true }, { message: "error" }).strict()
model ModelWithOptions {
id Int @id @default(autoincrement())
string String
}
The above model would generate the following zod schema:
/////////////////////////////////////////
// MODEL WITH OPTIONS SCHEMA
/////////////////////////////////////////
export const ModelWithOptionsSchema = z.object({
id: z.number().int(),
string: z.string(),
});
export type ModelWithOptions = z.infer<typeof ModelWithOptionsSchema>;
/////////////////////////////////////////
// MODEL WITH OPTIONS CUSTOM VALIDATORS SCHEMA
/////////////////////////////////////////
export const ModelWithOptionsCustomValidatorsSchema =
ModelWithOptionsSchema.strict().refine(
(data) => {
return true;
},
{ message: 'error' },
);
export type ModelWithOptionsCustomValidators = z.infer<
typeof ModelWithOptionsCustomValidatorsSchema
>;
If strict is passed in it is always added to the model schema at the first position. All other validators are added in the order they appear in the rich comments.
The zod types are named after the generated prisma types with an appended "Schema"
string. You just need to hover over a prisma function and you know which type to import. This would look something like this for trpc v.10:
import {
UserFindFirstArgsSchema,
UserFindManyArgsSchema,
UserFindUniqueArgsSchema,
} from './prisma/zod';
const appRouter = t.router({
findManyUser: t.procedure.input(UserFindManyArgsSchema).query(({ input }) => {
return prisma.user.findMany(input);
}),
findUniqueUser: t.procedure
.input(UserFindUniqueArgsSchema)
.query(({ input }) => {
return prisma.user.findUnique(input);
}),
findFirstUser: t.procedure
.input(UserFindFirstArgsSchema)
.query(({ input }) => {
return prisma.user.findFirst(input);
}),
});
You can add rich-comments to your models and fields that are then printed as jsDoc in your generated zod schema.
/// comment line one
/// comment line two
model MyModel {
id Int @id @default(autoincrement())
/// comment before validator @zod.string.min(4).max(10)
/// comment after validator
string String?
}
The above model would generate the following output where the validator is extracted from the rich comments and added to the string field:
/**
* comment line one
* comment line two
*/
export const MyModelSchema = z.object({
id: z.number(),
/**
* comment before validator
* comment after validator
*/
string: z.string().min(4).max(10).nullish(),
});
The validator is extracted from the comments and added to the string
There are a few differences between zod-prisma
and zod-prisma-types
.
The following sections should help you migrate from zod-prisma
to zod-prisma-types
.
The following generator options from zod-prisma
are not supported or implemented differently by zod-prisma-types
:
You can generate a schema that contains all relations of a model by passing the following option to the generator:
generator zod {
// ... other options
createRelationValuesTypes = true
}
See createRelationValuesTypes
for more information.
The casing of the model is fixed to the casing used in the prisma schema
and can not be changed. This way model names with mixed casing like MYModel
will work as expected when generating inputTypes
, enums
, argTypes
, etc.
The model suffix in zod-prisma-types
is fixed to Schema
and can not be changed.
zod-prisma-types
does not support decimal.js
but uses the decimal implementation provided by prisma to validate Decimal types. See Decimal for more information.
As of version 2.0.0
imports in zod-prisma-types
are handled with rich-comments on the model definition. See Custom imports for more information.
The nullablility in zod-prisma-types
is handled differently. See Json null values for more information.
zod-prisma
allows you to extend the zod fields with custom validators. This is also possible with zod-prisma-types
and the @zod.[key].[validator]
syntax. The different syntax is used to check if a validator can be used on a specific prisma type. See Field validators for more information.
// zod-prisma
model MyModel {
string String /// @zod.min(3) -> valid - `string` can be used on `String`
number Number /// @zod.min(3) -> valid - throws error only at runtime
}
//zod-prisma-types
model MyModel {
string String /// @zod.string.min(3) -> valid - `string` can be used on `String`
number Number /// @zod.string.min(3) -> invalid - throws error during generation
}
You can import custom helpers in the generator. Please refer to the section about custom imports for more information.