/motif-clustering

Clustering motif models to remove redundancy

Primary LanguagePostScript

motif-clustering

Clustering motif models to remove redundancy

Requirements

Included motif databases

  • Jolma et al., Cell 2013 (Supplemental Table 2)
  • JASPAR 2018
  • HOCOMOCO version 11 (757 motif models; both human and mouse)

Pre-computed data (GRCh38/hg38)

We have pre-computed genome-wide scans for both human and mouse genomes.

  • Human (GRCh38/h38)
    • Full motif matches (2179 motif models)
    • Collapsed motifs by similarity (286 motif clusters)
  • Mouse (mm10)
    • Full motif matches (2179 motif models)
    • Collapsed motifs by similarity (286 motif clusters)

Step 1: Compute pair-wise motif similarity

Here we TOMTOM to determine the similarity between all motif models (all pairwise) with the following code:

meme2meme databases/*/*.meme > tomtom/all.dbs.meme

tomtom \
	-bfile /net/seq/data/projects/motifs/hg19.K36.mappable_only.5-order.markov \
	-dist kullback \
	-motif-pseudo 0.1 \
	-text \
	-min-overlap 1 \
	tomtom/all.dbs.meme tomtom/all.dbs.meme \
> tomtom/tomtom.all.txt

I have a provided a script that will load this operation up on a SLURM parallel compute cluster (see e)

Step 2: Hierarchically cluster motifs by similarity

python2 hierarchical.py tomtom/tomtom.all.txt tomtom

This script performs hierarchical clustering (distance: correlation, complete linkage) and provides an output of cluster assignments at a range of tree heights (0.5-1). Below is a heatmap representation of motifs clustered by simililarity and clusters identified cutting the dendrogram at height 0.7.

Clustered heatmap cut at height 0.7

Step 3: Process each cluster to build a motif archetype

mkdir -p tomtom/height.0.70/viz

python2 process_cluster.py \
  tomtom/tomtom.all.txt \
  tomtom/clusters.0.70.txt \
  62 \
  tomtom/height.0.70

This command generates two files (per motif cluster).

python2 viz_cluster.py \
  tomtom/height.0.70/cluster-info.62.txt \
  tomtom/height.0.70/cluster-motifs.62.txt \
  tomtom/height.0.70/viz/cluster.62 

This wiil create a PDF and PNG with visualizing motif cluster #62 corresponding to the basic helix-loop-helix DBD containing OLIG/NEUROG. Dashed lines demarcate the boundaries of the "archetypal" motif position. The motif matches for the constituent models have will have their coordinates adjusted to match.

C62:OLIG (bHLH) C179:RUNX (RUNX domain)
C62:OLIG C69:MEIS
fetchChromSizes hg38 > /tmp/chrom.sizes
awk -v OFS="\t" '{ print $1, 0, $2; }' /tmp/chrom.sizes | sort-bed - > /tmp/chrom.sizes.bed
zcat moods.combined.all.bed.gz | bedops -e 100% - /tmp/chrom.sizes.bed \
| python2 /home/jvierstra/proj/code/motif-clustering/relabel.py  \
	/home/jvierstra/proj/code/motif-clustering/tomtom/height.0.70/cluster-info.with.dbd.and.color.csv \
| head -n10000 > /tmp/moods

To create a bigBed file from a bed9+2, we need to include an AutoSql file (bed_format.as)

table hg38_motifs_collapsed
"Collapsed motifs matches in hg38 (see: http://www.github.com/jvierstra/motif-clustering)"
(
string  chrom;        "Reference sequence chromosome or scaffold"
uint    chromStart;    "Start position of feature on chromosome"
uint    chromEnd;    "End position of feature on chromosome"
string  name;        "Name of gene"
uint    score;        "Score"
char[1] strand;        "+ or - for strand"
uint    thickStart;    "Coding region start"
uint    thickEnd;    "Coding region end"
uint      reserved;    "itemRgb"
string  motif_match_id;    "Motif identifier"
float  motif_match_score;        "Motif match score (MOODS score)"
string DBD;     "DNA binding domain"
uint n; "Number of motif matches from cluster"
)
bedToBigBed -as=bed_format.as -type=bed9+4 -tab moods.combined.all.bed chrom.sizes moods.combined.all.bb
awk -v OFS="\t" '{ print $1, $2, $3, $4, $11, $6, $10, $13}' moods.combined.all.bed | bgzip -c > moods.combined.all.bed.gz
tabix -p bed moods.combined.all.bed.gz
awk -v OFS="\t" '{ print $1, $2, $3, $4, 0, $6, $2, $3, "0,0,0", $5, $7 }' moods.combined.all.bed > /tmp/moods &