/SuccessiveConvexProgrammings.jl

Successive Convex Programming (SCP) algorithms

Primary LanguageJuliaMIT LicenseMIT

SuccessiveConvexProgrammings.jl

SuccessiveConvexProgrammings.jl (a.k.a. SCPs) is for Successive Convex Programming algorithms. Currently, this repo focuses on the realisation of the existing algorithms.

Usage

Here's an example code for Y. Mao et al., Successive Convexification, 2018, one of SCP algorithms for solving non-convex optimal control problem.

# Custom functions for problem formulation
function my_path_obj(x::Array, u::Array)::Array
    return [0.5*(norm(x)^2 + norm(u)^2)]
end

function my_terminal_obj(x::Array)::Array
    return [norm(x .- 2.0)^2]
end

function not_too_large_input(x::Array, u::Array)::Array  # not used here
    return u .+ 2.0  # <=0
end

function not_too_large_input2(x::Array, u::Array)::Array
    return u .- 2.0  # <=0
end

function not_too_small_input(x::Array, u::Array)::Array
    return -(u .+ 2.0)  # <=0
end

function my_const_path_eq(x::Array, u::Array, x_next::Array)::Array
    A = Matrix(I, 4, 4)
    B = [0 1; 0 1; 1 0; 1 0]
    dynamics(x, u) = A*x + B*u
    return x_next - dynamics(x, u)
end


function my_const_initial_eq(x::Array, u::Array)
    return x
end

function my_const_terminal_eq(x::Array)
    return (x .- 2.0)
end


# SCvx example
n_x, n_u, N = 4, 2, 31
scvx = SCvx(N=N, n_x=n_x, n_u=n_u,
            objs_path=[my_path_obj],
            objs_terminal=[my_terminal_obj],
            consts_path_ineq=[not_too_large_input2,
                              not_too_small_input],
            consts_path_eq=[my_const_path_eq],
            consts_initial_eq=[my_const_initial_eq],
            consts_terminal_eq=[my_const_terminal_eq],
           )
X_0, U_0 = ones(N, n_x), ones(N-1, n_u)
scvx = initial_guess!(scvx, X_0, U_0)
@time solve!(scvx, verbose=verbose)

Result:

  0.921291 seconds (4.62 M allocations: 299.719 MiB, 5.15% gc time)
SCvx
  N: Int64 31
  i: Int64 14
  i_max: Int64 200
  n_x: Int64 4
  n_u: Int64 2
  r_k: Float64 0.5
  λ: Float64 100000.0
  ρ0: Float64 0.0
  ρ1: Float64 0.25
  ρ2: Float64 0.7
  rl: Float64 0.1
  α: Float64 2.0
  β: Float64 2.0
  ϵ: Float64 0.001
  objs_path: Array{typeof(my_path_obj)}((1,))
  objs_terminal: Array{typeof(my_terminal_obj)}((1,))
  consts_path_ineq: Array{Function}((2,))
  consts_path_eq: Array{typeof(my_const_path_eq)}((1,))
  consts_initial_ineq: Nothing nothing
  consts_initial_eq: Array{typeof(my_const_initial_eq)}((1,))
  consts_terminal_ineq: Nothing nothing
  consts_terminal_eq: Array{typeof(my_const_terminal_eq)}((1,))
  X_k: Array{Float64}((31, 4)) [-1.3511982930901345e-15 -1.3548666104268918e-15 -1.380711075409979e-15 -1.3816195819191138e-15; -0.00022117647021521698 -0.00022117647021522433 -0.0002200495650853284 -0.0002200495650853302;  ; 0.5772280007439645 0.5772280007439643 0.5772237620536798 0.5772237620536798; 2.000000000537185 2.000000000537185 2.000000000537199 2.000000000537199]
  U_k: Array{Float64}((30, 2)) [-0.00022004956515178924 -0.00022117647028205013; -6.284246324169491e-5 -6.288074341830041e-5;  ; 0.41606753466786084 0.4160697952736614; 1.4227762395362158 1.4227720008458915]
  obj_k: Float64 2.9282206598904503
  flag: String "success"

See directory test for more details.

To enhance the optimisation speed, consider 1) warm start and 2) using PackageCompiler.jl.