This repository is an implementation of Robust Imitation Learning against Variations in Environment Dynamics published to ICML 2022.
The RIME code are modified from the codes of pytorch-a2c-ppo-acktr.
- MuJoCo (via OpenAI Gym)
For perturbed tasks, I only used mujoco200
and made these MuJoCo tasks with perturbed dynamics by changing components in xml files for the tasks to introduce fixed dynamics perturbations. For more details, please go to the environments
folder.
I provide all libraries and packages for this codes.
pip install -r requirements.txt
For training agents (over 10 random seeds), we can change env-parameter
& algo-name
for selecting other dynamics perturbation type (for single dynamics parameter cases) or training other algorithms as follows:
- env-parameter: gravity / mass
- algo-name: RIME / RIME+WSD / OMME / GAIL-Mixture / GAIL-Single
# train the agent in the 2 sampled interaction environments setting
python main.py --env-name=Hopper-v2 --env-parameter=gravity --sampled-envs=2 --algo-name=RIME+WSD
# train the agent in the 3 sampled interaction environments setting
python main.py --env-name=Hopper-v2 --env-parameter=gravity --sampled-envs=3 --algo-name=RIME+WSD
# train the agent in the 4 sampled interaction environments setting (2-dim perturbation parameter case)
python main.py --env-name=Hopper-v2 --sampled-envs=4 --algo-name=RIME+WSD