/beit3

Primary LanguagePython

Official PyTorch implementation and pretrained models of BEiT-3.

The code and pretrained models of BEiT can be found at here.

The code and pretrained models of BEiT v2 can be found at here.

Pretrained models

We provide BEiT-3 weights pretrained on monomodal and multimodal data. Our large-size model outperforms previous large-size models across various vision-language and vision downstream tasks. The models were pretrained with 224x224 resolution.

Tips

  • For vision-language tasks that require deep fusion, we recommend using BEiT3-base and BEiT3-large.
  • For image-text retrieval or vision tasks, using BEiT3-base-itc and BEiT3-large-itc usually achieve better performance.

Download Checkpoints

  1. Models pretrained on ImageNet-21k images, 160 GB text documents, and web-scale image-text pairs (collected from LAION-400M, English LAION-2B, COYO-700M, and CC15M).

    • BEiT3-base: #layer=12; hidden=768; FFN factor=4x; #head=12; patch=16x16; #parameters: 276M
    • BEiT3-large: #layer=24; hidden=1024; FFN factor=4x; #head=16; patch=16x16; #parameters: 746M
  2. Perform image-text contrastive intermediate tuning on BEiT3-base and BEiT3-large.

    • BEiT3-base-itc: #layer=12; hidden=768; FFN factor=4x; #head=12; patch=16x16; #parameters: 222M
    • BEiT3-large-itc: #layer=24; hidden=1024; FFN factor=4x; #head=16; patch=16x16; #parameters: 674M
  3. Add indomain image-text pairs (COCO and VG) to continue training BEiT3-base and BEiT3-large using masked data modeling. The indomain models achieve better performance on VQAv2 and NLVR2 tasks.

    • BEiT3-base-indomain: #layer=12; hidden=768; FFN factor=4x; #head=12; patch=16x16; #parameters: 276M
    • BEiT3-large-indomain: #layer=24; hidden=1024; FFN factor=4x; #head=16; patch=16x16; #parameters: 746M

Architecture

We use Magneto with decoupled Multiway Transformer as the backbone architecture. Magneto can have better training stability and obtain better performance across modalities (such as vision, and language). The implementation is based on the torchscale package.

Setup

alias=`whoami | cut -d'.' -f2`; docker run -it --rm --runtime=nvidia --ipc=host --privileged -v /home/${alias}:/home/${alias} pytorch/pytorch:1.8.1-cuda11.1-cudnn8-devel bash

Clone the repo and install required packages:

git clone https://github.com/microsoft/unilm.git
cd unilm/beit3
pip install -r requirements.txt

Fine-tuning on ImageNet-1k (Image Classification)

The detailed instructions can be found at get_started_for_image_classification.md. We only use vision-related parameters for image classification fine-tuning.

initialized checkpoint resolution acc@1 acc@5 #params weight
beit3_base_patch16_224 224x224 85.4 97.6 87M link
beit3_base_indomain_patch16_224 224x224 85.4 97.6 87M link
beit3_large_patch16_224 224x224 87.6 98.3 305M link
beit3_large_indomain_patch16_224 224x224 87.5 98.3 305M link

Fine-tuning on VQAv2 (Visual Question Answering)

The detailed instructions can be found at get_started_for_vqav2.md.

initialized checkpoint resolution augmented data test-dev test-std #params weight
beit3_base_patch16_224 480x480 - 77.65 - 228M link
beit3_base_indomain_patch16_224 480x480 - 78.46 - 228M link
beit3_large_patch16_224 480x480 - 81.85 - 683M link
beit3_large_indomain_patch16_224 480x480 - 82.53 - 683M link
beit3_large_indomain_patch16_224 768x768 VGQA 82.97 83.03 684M link

Fine-tuning on NLVR2 (Visual Reasoning)

The detailed instructions can be found at get_started_for_nlvr2.md.

initialized checkpoint resolution dev test-P #params weight
beit3_base_patch16_224 224x224 83.6 84.4 226M link
beit3_base_indomain_patch16_224 224x224 84.6 85.3 226M link
beit3_large_patch16_224 224x224 88.5 89.4 681M link
beit3_large_indomain_patch16_224 224x224 89.2 90.0 681M link

Fine-tuning on COCO Captioning and NoCaps (Image Captioning)

The detailed instructions can be found at get_started_for_image_captioning.md.

COCO Captioning

initialized checkpoint resolution test CIDEr #params weight
beit3_base_patch16_224 480x480 133.6 271M link
beit3_base_indomain_patch16_224 480x480 135.0 271M link
beit3_large_patch16_224 480x480 143.2 739M link

NoCaps

initialized checkpoint resolution val CIDEr #params weight
beit3_base_patch16_224 480x480 104.4 271M link
beit3_base_indomain_patch16_224 480x480 105.6 271M link
beit3_large_patch16_224 480x480 120.2 739M link

Fine-tuning on COCO and Flickr30k Retrieval (Image-Text Retrieval)

The detailed instructions can be found at get_started_for_retrieval.md.

COCO Retrieval

initialized checkpoint resolution IR@1 TR@1 #params weight
beit3_base_itc_patch16_224 384x384 61.4 79.1 222M link
beit3_large_itc_patch16_224 384x384 63.4 82.1 675M link

Flickr30k Retrieval

initialized checkpoint resolution IR@1 TR@1 #params weight
beit3_base_itc_patch16_224 384x384 86.2 96.3 222M link
beit3_large_itc_patch16_224 384x384 88.1 97.2 675M link

Citation

If you find this repository useful, please consider citing our work:

@inproceedings{beit3,
title={Image as a foreign language: {BEiT} pretraining for vision and vision-language tasks},
author={Wenhui Wang and Hangbo Bao and Li Dong and Johan Bjorck and Zhiliang Peng and Qiang Liu and Kriti Aggarwal and Owais Khan Mohammed and Saksham Singhal and Subhojit Som and Furu Wei},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2023}
}

@article{beitv2,
title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers},
author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei},
year={2022},
eprint={2208.06366},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

@inproceedings{beit,
title={{BEiT}: {BERT} Pre-Training of Image Transformers},
author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=p-BhZSz59o4}
}

Acknowledgement

This repository is built using the BEiT, the BEiTv2, the CLIP, the open_clip, the Oscar, the DeiT, the Dino repository and the timm library.

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree.

Microsoft Open Source Code of Conduct

Contact Information

For help or issues using BEiT-3 models, please submit a GitHub issue.