Definition of observation space
locker2153 opened this issue · 0 comments
locker2153 commented
I have some questions about the value range of the observation space represented by spaces.Box.
Why is it set like this?
“
low=np.zeros(self.ts.num_green_phases + 1 + 2 * len(self.ts.lanes), dtype=np.float32),
high=np.ones(self.ts.num_green_phases + 1 + 2 * len(self.ts.lanes), dtype=np.float32),
”
How do I understand it?
num_green_phases + 1 + 2 * len(self.ts.lanes)
class DefaultObservationFunction(ObservationFunction):
"""Default observation function for traffic signals."""
def __init__(self, ts: TrafficSignal):
"""Initialize default observation function."""
super().__init__(ts)
def __call__(self) -> np.ndarray:
"""Return the default observation."""
phase_id = [1 if self.ts.green_phase == i else 0 for i in range(self.ts.num_green_phases)] # one-hot encoding
min_green = [0 if self.ts.time_since_last_phase_change < self.ts.min_green + self.ts.yellow_time else 1]
density = self.ts.get_lanes_density()
queue = self.ts.get_lanes_queue()
observation = np.array(phase_id + min_green + density + queue, dtype=np.float32)
return observation
def observation_space(self) -> spaces.Box:
"""Return the observation space."""
return spaces.Box(
low=np.zeros(self.ts.num_green_phases + 1 + 2 * len(self.ts.lanes), dtype=np.float32),
high=np.ones(self.ts.num_green_phases + 1 + 2 * len(self.ts.lanes), dtype=np.float32),
)