/Babysitting-A-Dataset-Using-Pytorch-and-Alexnet

🥸✅ 🐵❌Developing a babysitting algorithm to preprocess CIFAR10 and FDDB Dataset and train them on Alexnet using Pytorch

Primary LanguageJupyter NotebookMIT LicenseMIT

How to run the code?

Dataset:

Extract the FDDB_dataset.zip. There will be two folders called training and testing respectively.

**Copy the local directory till ../../dataset/ **

*Change the argparse in the main.py file*

 parser.add_argument("directory", help="Directory of the dataset",nargs = '?',default = " *Add directory here*/dataset/")

main.py

change the sys.append() to the directory of the project.

Run the code:

python3 main.py

The default argparser will run for FDDB dataset, with SGD optimizer. Change the optimizer to SGD in the default value.

The code for CIFAR10 is run on google collab due to GPU.