This is the project page for paper:
You Only Segment Once: Towards Real-Time Panoptic Segmentation, In CVPR 2023.
On COCO validation set:
Backbone | Scale | PQ | FPS | GPU | Model |
---|---|---|---|---|---|
R50 | 800,1333 | 48.4 | 23.6 | V100 | model |
R50 | 512,800 | 46.4 | 45.6 | V100 | model |
On Cityscapes validation set:
Backbone | Scale | PQ | FPS | GPU | Model |
---|---|---|---|---|---|
R50 | 1024,2048 | 59.7 | 11.1 | V100 | model |
R50 | 512,1024 | 52.5 | 22.6 | V100 | model |
On ADE20k validation set:
Backbone | Scale | PQ | FPS | GPU | Model |
---|---|---|---|---|---|
R50 | 640,2560 | 38.0 | 35.4 | V100 | model |
On Mapillary Vistas validation set:
Backbone | Scale | PQ | FPS | GPU | Model |
---|---|---|---|---|---|
R50 | 2048,2048 | 34.1 | 7.1 | A100 | model |
We recommend to use Anaconda for installation.
conda create -n YOSO python=3.8 -y
conda activate YOSO
conda install pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch
pip install pycocotools -i https://pypi.douban.com/simple
pip install git+https://github.com/cocodataset/panopticapi.git
git clone https://github.com/hujiecpp/YOSO.git
cd YOSO
python setup.py develop
See Preparing Datasets for Mask2Former.
- Train YOSO (e.g., on COCO dataset with R50 backbone).
python projects/YOSO/train_net.py --num-gpus 4 --config-file projects/YOSO/configs/YOSO-R50.yaml
- Evaluate YOSO (e.g., on COCO dataset with R50 backbone).
python projects/YOSO/train_net.py --num-gpus 4 --config-file projects/YOSO/configs/YOSO-R50.yaml --eval-only MODEL.WEIGHTS ./model_zoo/yoso_res50_coco.pth
- Run YOSO demo (e.g., on video with R50 backbone).
python demo/demo.py --config-file projects/YOSO/configs/YOSO-R50.yaml --video-input input_video.mp4 --output output_video.mp4 --opts MODEL.WEIGHTS ./model_zoo/yoso_res50_coco.pth
If YOSO helps your research, please cite it in your publications:
@article{hu2023yoso,
title={You Only Segment Once: Towards Real-Time Panoptic Segmentation},
author={Hu, Jie and Huang, Linyan and Ren, Tianhe and Zhang, Shengchuan and Ji, Rongrong and Cao, Liujuan},
journal={arXiv preprint arXiv:2303.14651},
year={2023}
}