Mohan-Zhang-u/smpl

Add link to docs and experiments

Closed this issue · 2 comments

The URL to the documentation of smpl: https://smpl-env.github.io/smpl-document/index.html
The URL to the smpl experiments: https://github.com/smpl-env/smpl-experiments


AttributeError Traceback (most recent call last)
Cell In[12], line 3
1 from smpl.envs.mabenv import MAbEnvGym, xscale, uscale
2 import numpy as np
----> 3 env = MAbEnvGym(normalize=False, standard_reward_style='setpoint')
4 xss = env.xss / xscale
5 uss = env.uss / uscale

File ~/smpl-main/smpl/envs/mabenv.py:182, in MAbEnvGym.init(self, dataset_dir, dense_reward, normalize, debug_mode, action_dim, observation_dim, reward_function, done_calculator, max_observations, min_observations, max_actions, min_actions, observation_name, action_name, np_dtype, max_steps, error_reward, initial_state_deviation_ratio, upstream_states, switch_threshold, dt_itgr, dt_spl, ss_dir, standard_reward_style)
179 self.min_actions, self.max_actions, self.min_observations, self.max_observations = self.min_actions / uscale, self.max_actions / uscale, self.min_observations / xscale, self.max_observations / xscale
180 self.controller = ControllerHelper(self.num_x, self.num_u, self.max_steps, dt_itgr, dt_spl, xscale, uscale,
181 self.xss, self.uss)
--> 182 self.plant = self.controller._build_plant()
184 # define the state and action spaces
185 self.max_observations = np.array(self.max_observations, dtype=self.np_dtype)

File ~/smpl-main/smpl/envs/helpers/mab_helpers.py:86, in ControllerHelper._build_plant(self)
84 def _build_plant(self):
85 xdot_scale = self.model_helper.xdot_scale # Excluding the time information
---> 86 self.plant = mpc.DiscreteSimulator(xdot_scale, self.dt_itgl, [self.Nx, self.Nu], ['x', 'u'])
87 return self.plant

AttributeError: module 'mpctools' has no attribute 'DiscreteSimulator'

Could you please let me know which version of mpctools you used while developing the smpl library? How should I correctly install the version of mpctools that includes the DiscreteSimulator? Or is there any other solution that would allow me to run the MAbEnvGym environment smoothly?