Nightmare-n/UniPAD

About ablation study on different view transform strategies (BEVDet, BEVDepth, BEVFormer)

Closed this issue · 2 comments

Hi. Thank you for your interesting work.
I have a question about the ablation study of your paper in Table 5.
Did you mean you only take the view transformation from BEVDet, BEVDepth and BEVFormer while keeping other components like image backbone, detection head, ... same as in UVTR-cam?
Could you please provide the config files for these studies?
Thank you in advance.

Hello, thank you for your interest. Due to the refactoring of the code, some of the old configs do not exactly match the code. We provide the old configs for reference.

BEVDet:

_base_ = [
    '../../../configs/_base_/datasets/nus-3d.py',
    '../../../configs/_base_/default_runtime.py'
]

plugin=True
plugin_dir='projects/mmdet3d_plugin/'

# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
voxel_size = [0.2, 0.2, 8]
unified_voxel_size = [0.8, 0.8, 1.6]
frustum_range = [0, 0, 0.0, 1600, 928, 64.0]
frustum_size = [16.0, 16.0, 1.0]
cam_sweep_num = 1
fp16_enabled = True
unified_voxel_shape = [int((point_cloud_range[3] - point_cloud_range[0]) / unified_voxel_size[0]),
                       int((point_cloud_range[4] - point_cloud_range[1]) / unified_voxel_size[1]),
                       int((point_cloud_range[5] - point_cloud_range[2]) / unified_voxel_size[2])]
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# For nuScenes we usually do 10-class detection
class_names = [
    'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
    'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]

input_modality = dict(
    use_lidar=False,
    use_camera=True,
    use_radar=False,
    use_map=False,
    use_external=False,
    cam_sweep_num=cam_sweep_num)

model = dict(
    type='UVTR',
    use_grid_mask=True,
    img_backbone=dict(
        type='MaskConvNeXt',
        arch='small',
        drop_path_rate=0.2,
        out_indices=(2, 3),
        norm_out=True,
        frozen_stages=1,
        init_cfg=dict(type='Pretrained', checkpoint='data/ckpts/processed_convnext_small_1k_224_ema.pth')),
    img_neck=dict(
        type='CustomFPN',
        in_channels=[384, 768],
        out_channels=128,
        num_outs=1,
        start_level=0,
        out_ids=[0]),
    depth_head=dict(
        type='SimpleDepth'),
    pts_bbox_head=dict(
        type='UVTRHead',
        view_cfg=dict(
            type='Uni3DVoxelPool',
            pc_range=point_cloud_range,
            voxel_size=unified_voxel_size,
            voxel_shape=unified_voxel_shape,
            frustum_range=frustum_range,
            frustum_size=frustum_size,
            num_convs=3,
            kernel_size=(3,3,3),
            embed_dim=128,
            keep_sweep_dim=True,
            fp16_enabled=fp16_enabled,
        ),
        # transformer_cfg
        num_query=900,
        num_classes=10,
        in_channels=128,
        sync_cls_avg_factor=True,
        with_box_refine=True,
        as_two_stage=False,
        transformer=dict(
            type='Uni3DDETR',
            fp16_enabled=fp16_enabled,
            decoder=dict(
                type='UniTransformerDecoder',
                num_layers=6,
                return_intermediate=True,
                transformerlayers=dict(
                    type='BaseTransformerLayer',
                    attn_cfgs=[
                        dict(
                            type='MultiheadAttention',
                            embed_dims=128,
                            num_heads=8,
                            dropout=0.1),
                        dict(
                            type='UniCrossAtten',
                            num_points=1,
                            embed_dims=128,
                            num_sweeps=cam_sweep_num,
                            fp16_enabled=fp16_enabled)
                    ],
                    ffn_cfgs=dict(
                        type='FFN',
                        embed_dims=128,
                        feedforward_channels=512,
                        num_fcs=2,
                        ffn_drop=0.1,
                        act_cfg=dict(type='ReLU', inplace=True),
                    ),
                    norm_cfg=dict(type='LN'),
                    operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
                                     'ffn', 'norm'))
            )
        ),
        bbox_coder=dict(
            type='NMSFreeCoder',
            post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
            pc_range=point_cloud_range,
            max_num=300,
            voxel_size=voxel_size,
            num_classes=10), 
        positional_encoding=dict(
            type='SinePositionalEncoding',
            num_feats=64,
            normalize=True,
            offset=-0.5),
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=2.0),
        loss_bbox=dict(type='L1Loss', loss_weight=0.25),
        loss_iou=dict(type='GIoULoss', loss_weight=0.0),
        code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]),
    # model training and testing settings
    train_cfg=dict(pts=dict(
        assigner=dict(
            type='HungarianAssigner3D',
            cls_cost=dict(type='FocalLossCost', weight=2.0),
            reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
            iou_cost=dict(type='IoUCost', weight=0.0), # Fake cost. This is just to make it compatible with DETR head. 
            pc_range=point_cloud_range))))

dataset_type = 'NuScenesSweepDataset'
data_root = 'data/nuscenes/'

file_client_args = dict(
    backend='petrel',
    path_mapping=dict({
        '../data/nuscenes/': 's3://yanghonghui/nuscenes/',
        'data/nuscenes/': 's3://yanghonghui/nuscenes/',
    }))

# file_client_args = dict(backend='disk')

train_pipeline = [
    dict(type='LoadMultiViewMultiSweepImageFromFiles', sweep_num=cam_sweep_num, to_float32=True, file_client_args=file_client_args),
    dict(type='PhotoMetricDistortionMultiViewImage'),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False),
    dict(
        type='UnifiedRotScaleTransFlip',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='NormalizeMultiviewImage', **img_norm_cfg),
    dict(type='PadMultiViewImage', size_divisor=32),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='CollectUnified3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'img'])
]
test_pipeline = [
    dict(type='LoadMultiViewMultiSweepImageFromFiles', sweep_num=cam_sweep_num, to_float32=True, file_client_args=file_client_args),
    dict(type='NormalizeMultiviewImage', **img_norm_cfg),
    dict(type='PadMultiViewImage', size_divisor=32),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='CollectUnified3D', keys=['img'])
]


data = dict(
    samples_per_gpu=1,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'nuscenes_unified_infos_train.pkl', # please change to your own info file
        pipeline=train_pipeline,
        classes=class_names,
        modality=input_modality,
        test_mode=False,
        use_valid_flag=True,
        box_type_3d='LiDAR',
        load_interval=2),
    val=dict(type=dataset_type, pipeline=test_pipeline, classes=class_names, modality=input_modality,
             ann_file=data_root + "nuscenes_unified_infos_val.pkl"), # please change to your own info file
    test=dict(type=dataset_type, pipeline=test_pipeline, classes=class_names, modality=input_modality,
             ann_file=data_root + "nuscenes_unified_infos_val.pkl")) # please change to your own info file

optimizer = dict(
    type='AdamW', 
    lr=2e-4,
    paramwise_cfg=dict(
        custom_keys={
            'img_backbone': dict(lr_mult=0.1),
        }),
    weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='CosineAnnealing',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    min_lr_ratio=1e-3)
total_epochs = 12
evaluation = dict(interval=4, pipeline=test_pipeline)
checkpoint_config = dict(max_keep_ckpts=1, interval=1)

find_unused_parameters = True
runner = dict(type='EpochBasedRunner', max_epochs=total_epochs)
load_from = None
resume_from = None
# fp16 setting
fp16 = dict(loss_scale=32.)

BEVformer:

_base_ = [
    '../../../configs/_base_/datasets/nus-3d.py',
    '../../../configs/_base_/default_runtime.py'
]

plugin=True
plugin_dir='projects/mmdet3d_plugin/'

# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
voxel_size = [0.2, 0.2, 8]
unified_voxel_size = [0.8, 0.8, 1.6]
cam_sweep_num = 1
fp16_enabled = True
unified_voxel_shape = [int((point_cloud_range[3] - point_cloud_range[0]) / unified_voxel_size[0]),
                       int((point_cloud_range[4] - point_cloud_range[1]) / unified_voxel_size[1]),
                       int((point_cloud_range[5] - point_cloud_range[2]) / unified_voxel_size[2])]
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# For nuScenes we usually do 10-class detection
class_names = [
    'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
    'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]

input_modality = dict(
    use_lidar=False,
    use_camera=True,
    use_radar=False,
    use_map=False,
    use_external=False,
    cam_sweep_num=cam_sweep_num)

model = dict(
    type='UVTR',
    use_grid_mask=True,
    img_backbone=dict(
        type='MaskConvNeXt',
        arch='small',
        drop_path_rate=0.2,
        out_indices=(0, 1, 2, 3),
        norm_out=True,
        frozen_stages=1,
        init_cfg=dict(type='Pretrained', checkpoint='data/ckpts/processed_convnext_small_1k_224_ema.pth')),
    img_neck=dict(
        type='FPN',
        in_channels=[96, 192, 384, 768],
        out_channels=128,
        start_level=1,
        add_extra_convs='on_output',
        num_outs=4,
        relu_before_extra_convs=True),
    depth_head=None,
    pts_bbox_head=dict(
        type='UVTRHead',
        view_cfg=dict(
            type='Uni3DCrossAttn',
            pc_range=point_cloud_range,
            voxel_size=unified_voxel_size,
            voxel_shape=unified_voxel_shape,
            num_convs=3,
            kernel_size=(3,3,3),
            embed_dim=128,
            num_levels=4,
            num_points=2,
            normalize=True,
            keep_sweep_dim=True,
            fp16_enabled=fp16_enabled,
        ),
        # transformer_cfg
        num_query=900,
        num_classes=10,
        in_channels=128,
        sync_cls_avg_factor=True,
        with_box_refine=True,
        as_two_stage=False,
        transformer=dict(
            type='Uni3DDETR',
            fp16_enabled=fp16_enabled,
            decoder=dict(
                type='UniTransformerDecoder',
                num_layers=6,
                return_intermediate=True,
                transformerlayers=dict(
                    type='BaseTransformerLayer',
                    attn_cfgs=[
                        dict(
                            type='MultiheadAttention',
                            embed_dims=128,
                            num_heads=8,
                            dropout=0.1),
                        dict(
                            type='UniCrossAtten',
                            num_points=1,
                            embed_dims=128,
                            num_sweeps=cam_sweep_num,
                            fp16_enabled=fp16_enabled)
                    ],
                    ffn_cfgs=dict(
                        type='FFN',
                        embed_dims=128,
                        feedforward_channels=512,
                        num_fcs=2,
                        ffn_drop=0.1,
                        act_cfg=dict(type='ReLU', inplace=True),
                    ),
                    norm_cfg=dict(type='LN'),
                    operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
                                     'ffn', 'norm'))
            )
        ),
        bbox_coder=dict(
            type='NMSFreeCoder',
            post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
            pc_range=point_cloud_range,
            max_num=300,
            voxel_size=voxel_size,
            num_classes=10), 
        positional_encoding=dict(
            type='SinePositionalEncoding',
            num_feats=64,
            normalize=True,
            offset=-0.5),
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=2.0),
        loss_bbox=dict(type='L1Loss', loss_weight=0.25),
        loss_iou=dict(type='GIoULoss', loss_weight=0.0),
        code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]),
    # model training and testing settings
    train_cfg=dict(pts=dict(
        assigner=dict(
            type='HungarianAssigner3D',
            cls_cost=dict(type='FocalLossCost', weight=2.0),
            reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
            iou_cost=dict(type='IoUCost', weight=0.0), # Fake cost. This is just to make it compatible with DETR head. 
            pc_range=point_cloud_range))))

dataset_type = 'NuScenesSweepDataset'
data_root = 'data/nuscenes/'

file_client_args = dict(
    backend='petrel',
    path_mapping=dict({
        '../data/nuscenes/': 's3://yanghonghui/nuscenes/',
        'data/nuscenes/': 's3://yanghonghui/nuscenes/',
    }))

# file_client_args = dict(backend='disk')

train_pipeline = [
    dict(type='LoadMultiViewMultiSweepImageFromFiles', sweep_num=cam_sweep_num, to_float32=True, file_client_args=file_client_args),
    dict(type='PhotoMetricDistortionMultiViewImage'),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False),
    dict(
        type='UnifiedRotScaleTransFlip',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='NormalizeMultiviewImage', **img_norm_cfg),
    dict(type='PadMultiViewImage', size_divisor=32),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='CollectUnified3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'img'])
]
test_pipeline = [
    dict(type='LoadMultiViewMultiSweepImageFromFiles', sweep_num=cam_sweep_num, to_float32=True, file_client_args=file_client_args),
    dict(type='NormalizeMultiviewImage', **img_norm_cfg),
    dict(type='PadMultiViewImage', size_divisor=32),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='CollectUnified3D', keys=['img'])
]


data = dict(
    samples_per_gpu=1,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'nuscenes_unified_infos_train.pkl', # please change to your own info file
        pipeline=train_pipeline,
        classes=class_names,
        modality=input_modality,
        test_mode=False,
        use_valid_flag=True,
        box_type_3d='LiDAR',
        load_interval=2),
    val=dict(type=dataset_type, pipeline=test_pipeline, classes=class_names, modality=input_modality,
             ann_file=data_root + "nuscenes_unified_infos_val.pkl"), # please change to your own info file
    test=dict(type=dataset_type, pipeline=test_pipeline, classes=class_names, modality=input_modality,
             ann_file=data_root + "nuscenes_unified_infos_val.pkl")) # please change to your own info file

optimizer = dict(
    type='AdamW', 
    lr=2e-4,
    paramwise_cfg=dict(
        custom_keys={
            'img_backbone': dict(lr_mult=0.1),
        }),
    weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='CosineAnnealing',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    min_lr_ratio=1e-3)
total_epochs = 12
evaluation = dict(interval=4, pipeline=test_pipeline)
checkpoint_config = dict(max_keep_ckpts=1, interval=1)

find_unused_parameters = True
runner = dict(type='EpochBasedRunner', max_epochs=total_epochs)
load_from = None
resume_from = None
# fp16 setting
fp16 = dict(loss_scale=32.)

BEVDepth:

_base_ = [
    '../../../configs/_base_/datasets/nus-3d.py',
    '../../../configs/_base_/default_runtime.py'
]

plugin=True
plugin_dir='projects/mmdet3d_plugin/'

# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
voxel_size = [0.2, 0.2, 8]
unified_voxel_size = [0.8, 0.8, 1.6]
frustum_range = [0, 0, 1.0, 1600, 928, 60.0]
frustum_size = [16.0, 16.0, 0.5]
cam_sweep_num = 1
fp16_enabled = True
unified_voxel_shape = [int((point_cloud_range[3] - point_cloud_range[0]) / unified_voxel_size[0]),
                       int((point_cloud_range[4] - point_cloud_range[1]) / unified_voxel_size[1]),
                       int((point_cloud_range[5] - point_cloud_range[2]) / unified_voxel_size[2])]
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# For nuScenes we usually do 10-class detection
class_names = [
    'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
    'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]

input_modality = dict(
    use_lidar=False,
    use_camera=True,
    use_radar=False,
    use_map=False,
    use_external=False,
    cam_sweep_num=cam_sweep_num)

model = dict(
    type='UVTR',
    use_grid_mask=True,
    img_backbone=dict(
        type='MaskConvNeXt',
        arch='small',
        drop_path_rate=0.2,
        out_indices=(2, 3),
        norm_out=True,
        frozen_stages=1,
        init_cfg=dict(type='Pretrained', checkpoint='data/ckpts/processed_convnext_small_1k_224_ema.pth')),
    img_neck=dict(
        type='CustomFPN',
        in_channels=[384, 768],
        out_channels=128,
        num_outs=1,
        start_level=0,
        out_ids=[0]),
    depth_head=dict(
        type='ComplexDepth',
        use_dcn=False,
        aspp_mid_channels=96),
    pts_bbox_head=dict(
        type='UVTRHead',
        view_cfg=dict(
            type='Uni3DVoxelPoolDepth',
            pc_range=point_cloud_range,
            voxel_size=unified_voxel_size,
            voxel_shape=unified_voxel_shape,
            frustum_range=frustum_range,
            frustum_size=frustum_size,
            num_convs=3,
            kernel_size=(3,3,3),
            embed_dim=128,
            keep_sweep_dim=True,
            fp16_enabled=fp16_enabled,
            loss_cfg=dict(
                close_radius=3.0,
                depth_loss_weights=[1.0]
            ),
        ),
        # transformer_cfg
        num_query=900,
        num_classes=10,
        in_channels=128,
        sync_cls_avg_factor=True,
        with_box_refine=True,
        as_two_stage=False,
        transformer=dict(
            type='Uni3DDETR',
            fp16_enabled=fp16_enabled,
            decoder=dict(
                type='UniTransformerDecoder',
                num_layers=6,
                return_intermediate=True,
                transformerlayers=dict(
                    type='BaseTransformerLayer',
                    attn_cfgs=[
                        dict(
                            type='MultiheadAttention',
                            embed_dims=128,
                            num_heads=8,
                            dropout=0.1),
                        dict(
                            type='UniCrossAtten',
                            num_points=1,
                            embed_dims=128,
                            num_sweeps=cam_sweep_num,
                            fp16_enabled=fp16_enabled)
                    ],
                    ffn_cfgs=dict(
                        type='FFN',
                        embed_dims=128,
                        feedforward_channels=512,
                        num_fcs=2,
                        ffn_drop=0.1,
                        act_cfg=dict(type='ReLU', inplace=True),
                    ),
                    norm_cfg=dict(type='LN'),
                    operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
                                     'ffn', 'norm'))
            )
        ),
        bbox_coder=dict(
            type='NMSFreeCoder',
            post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
            pc_range=point_cloud_range,
            max_num=300,
            voxel_size=voxel_size,
            num_classes=10), 
        positional_encoding=dict(
            type='SinePositionalEncoding',
            num_feats=64,
            normalize=True,
            offset=-0.5),
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=2.0),
        loss_bbox=dict(type='L1Loss', loss_weight=0.25),
        loss_iou=dict(type='GIoULoss', loss_weight=0.0),
        code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]),
    # model training and testing settings
    train_cfg=dict(pts=dict(
        assigner=dict(
            type='HungarianAssigner3D',
            cls_cost=dict(type='FocalLossCost', weight=2.0),
            reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
            iou_cost=dict(type='IoUCost', weight=0.0), # Fake cost. This is just to make it compatible with DETR head. 
            pc_range=point_cloud_range))))

dataset_type = 'NuScenesSweepDataset'
data_root = 'data/nuscenes/'

file_client_args = dict(
    backend='petrel',
    path_mapping=dict({
        '../data/nuscenes/': 's3://yanghonghui/nuscenes/',
        'data/nuscenes/': 's3://yanghonghui/nuscenes/',
    }))

# file_client_args = dict(backend='disk')

train_pipeline = [
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, file_client_args=file_client_args),
    dict(type='LoadMultiViewMultiSweepImageFromFiles', sweep_num=cam_sweep_num, to_float32=True, file_client_args=file_client_args),
    dict(type='PhotoMetricDistortionMultiViewImage'),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False),
    dict(
        type='UnifiedRotScaleTransFlip',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='NormalizeMultiviewImage', **img_norm_cfg),
    dict(type='PadMultiViewImage', size_divisor=32),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='CollectUnified3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'points', 'img'])
]
test_pipeline = [
    dict(type='LoadMultiViewMultiSweepImageFromFiles', sweep_num=cam_sweep_num, to_float32=True, file_client_args=file_client_args),
    dict(type='NormalizeMultiviewImage', **img_norm_cfg),
    dict(type='PadMultiViewImage', size_divisor=32),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='CollectUnified3D', keys=['img'])
]


data = dict(
    samples_per_gpu=1,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'nuscenes_unified_infos_train.pkl', # please change to your own info file
        pipeline=train_pipeline,
        classes=class_names,
        modality=input_modality,
        test_mode=False,
        use_valid_flag=True,
        box_type_3d='LiDAR',
        load_interval=2),
    val=dict(type=dataset_type, pipeline=test_pipeline, classes=class_names, modality=input_modality,
             ann_file=data_root + "nuscenes_unified_infos_val.pkl"), # please change to your own info file
    test=dict(type=dataset_type, pipeline=test_pipeline, classes=class_names, modality=input_modality,
             ann_file=data_root + "nuscenes_unified_infos_val.pkl")) # please change to your own info file

optimizer = dict(
    type='AdamW', 
    lr=2e-4,
    paramwise_cfg=dict(
        custom_keys={
            'img_backbone': dict(lr_mult=0.1),
        }),
    weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='CosineAnnealing',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    min_lr_ratio=1e-3)
total_epochs = 12
evaluation = dict(interval=4, pipeline=test_pipeline)
checkpoint_config = dict(max_keep_ckpts=1, interval=1)

find_unused_parameters = True
runner = dict(type='EpochBasedRunner', max_epochs=total_epochs)
load_from = None
resume_from = None
# fp16 setting
fp16 = dict(loss_scale=32.)

Thank you for your response. I will close this topic.