- set enviroment
cd cvpr22
conda create -y -n vpd
conda activate vpd
conda env update --file config/environment.yml
-
download models data
download -
make dirs
- cvpr22
- saved_results
- nyu
- scannet
- su3
- saved_results
- neurVPS
- saved_results
- scannet
- su3
- tmm17
- saved_results
- cvpr22
-
modify cvpr code in video_predict.py and predict.py
- img_size: video_predict.py 35 line
- weight_name: predict.py 123 line
-
run python code
cd cvpr22 # or cd neurVPS
python video_predict.py nyu #scannet su3
name | info |
---|---|
os | ubuntu18.04 |
cpu | Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz |
gpu | GeForce RTX 2080 Ti Rev. A |
ram | 16G |
name | version |
---|---|
python | 3.7.0 |
pytorch | 1.12.0-cuda11.3-cudnn8 |
numpy | 1.21.2 |
matplotlib | 3.2.2 |
opencv-python | 4.8.0.74 |
scipy | 1.7.3 |
scikit-image | 0.18.3 |
- Performance
name sec per frame(avg) NYU(cvpr) 0.20 sec ScanNet(cvpr) 0.17 sec SU3(cvpr) 0.18 sec SU3(neur) 1.09 sec ScanNet(neur) 1.20 sec TMM17(neur) 0.85 sec - AA(Angular Accuracy) Graph
(cvpr) https://arxiv.org/abs/2203.08586
(neurVPS) https://arxiv.org/abs/1910.06316