Pinned Repositories
chemical_representation_learning_for_toxicity_prediction
Chemical representation learning paper in Digital Discovery
fdsa
A fully differentiable set autoencoder
paccmann_chemistry
Generative models of chemical data for PaccMann^RL
paccmann_datasets
pytoda - PaccMann PyTorch Dataset Classes. Read the docs: https://paccmann.github.io/paccmann_datasets/
paccmann_kinase_binding_residues
Comparison of active site and full kinase sequences for drug-target affinity prediction and molecular generation. Full paper: https://pubs.acs.org/doi/10.1021/acs.jcim.1c00889
paccmann_predictor
PyTorch implementation of bimodal neural networks for drug-cell (pharmarcogenomics) and drug-protein (proteochemometrics) interaction prediction
paccmann_proteomics
PaccMann models for protein language modeling
paccmann_rl
Code pipeline for the PaccMann^RL in iScience: https://www.cell.com/iscience/fulltext/S2589-0042(21)00237-6
paccmann_sarscov2
Code for paper on automation of discovery and synthesis of targeted molecules: https://iopscience.iop.org/article/10.1088/2632-2153/abe808
TITAN
Code for "T Cell Receptor Specificity Prediction with Bimodal Attention Networks" (https://doi.org/10.1093/bioinformatics/btab294, ISMB 2021)
PaccMann's Repositories
PaccMann/chemical_representation_learning_for_toxicity_prediction
Chemical representation learning paper in Digital Discovery
PaccMann/paccmann_predictor
PyTorch implementation of bimodal neural networks for drug-cell (pharmarcogenomics) and drug-protein (proteochemometrics) interaction prediction
PaccMann/paccmann_proteomics
PaccMann models for protein language modeling
PaccMann/paccmann_kinase_binding_residues
Comparison of active site and full kinase sequences for drug-target affinity prediction and molecular generation. Full paper: https://pubs.acs.org/doi/10.1021/acs.jcim.1c00889
PaccMann/paccmann_rl
Code pipeline for the PaccMann^RL in iScience: https://www.cell.com/iscience/fulltext/S2589-0042(21)00237-6
PaccMann/TITAN
Code for "T Cell Receptor Specificity Prediction with Bimodal Attention Networks" (https://doi.org/10.1093/bioinformatics/btab294, ISMB 2021)
PaccMann/paccmann_datasets
pytoda - PaccMann PyTorch Dataset Classes. Read the docs: https://paccmann.github.io/paccmann_datasets/
PaccMann/paccmann_sarscov2
Code for paper on automation of discovery and synthesis of targeted molecules: https://iopscience.iop.org/article/10.1088/2632-2153/abe808
PaccMann/fdsa
A fully differentiable set autoencoder
PaccMann/paccmann_chemistry
Generative models of chemical data for PaccMann^RL
PaccMann/paccmann_gp
PyTorch/skopt based implementation of Bayesian optimization with Gaussian processes - build to optimize latent spaces of VAEs to generate molecules with desired properties
PaccMann/paccmann_generator
Generative models for transcriptomic-driven or protein-driven molecular design (PaccMann^RL).
PaccMann/paccmann_omics
Generative models for transcriptomics profiles and proteins
PaccMann/paccmann_predictor_tf
Tensorflow implementation of PaccMann (drug sensitivity prediction)
PaccMann/paccmann_polymer
Graph-regularized VAE and the impact of topology on learned representations
PaccMann/reinvent_models
PaccMann fork of Reinvent Models
PaccMann/transcriptomic_signature_sampling
PaccMann/guacamol
Benchmarks for generative chemistry
PaccMann/docs
Documentation for PaccMann service
PaccMann/guacamol_baselines
Baselines models for GuacaMol benchmarks
PaccMann/moses
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
PaccMann/paccmann.github.io
PaccMann website
PaccMann/tape
Tasks Assessing Protein Embeddings (TAPE), a set of five biologically relevant semi-supervised learning tasks spread across different domains of protein biology.