RedVelvetCake21's Stars
d2l-ai/d2l-zh
《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。
geekxh/hello-algorithm
🌍 针对小白的算法训练 | 包括四部分:①.大厂面经 ②.力扣图解 ③.千本开源电子书 ④.百张技术思维导图(项目花了上百小时,希望可以点 star 支持,🌹感谢~)推荐免费ChatGPT使用网站
datawhalechina/easy-rl
强化学习中文教程(蘑菇书🍄),在线阅读地址:https://datawhalechina.github.io/easy-rl/
thu-ml/tianshou
An elegant PyTorch deep reinforcement learning library.
km1994/nlp_paper_study
该仓库主要记录 NLP 算法工程师相关的顶会论文研读笔记
wangshusen/DRL
Deep Reinforcement Learning
yuchenlin/rebiber
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).
swz30/Restormer
[CVPR 2022--Oral] Restormer: Efficient Transformer for High-Resolution Image Restoration. SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.
vahidk/EffectivePyTorch
PyTorch tutorials and best practices.
pavlin-policar/openTSNE
Extensible, parallel implementations of t-SNE
amusi/PyTorch-From-Zero-To-One
PyTorch从入门到精通
carrie0307/DL_EventExtractionPapers
2015年以来基于深度学习方法的事件抽取论文整理
demuxin/pytorch_tricks
some tircks for PyTorch
ZacBi/CS224n-2019-solutions
Complete solutions for Stanford CS224n, winter, 2019
hotpotqa/hotpot
ModelTC/United-Perception
United Perception
thunlp/BMCourse
The repo for Tsinghua summer course: Interdisciplinary Seminar on Big Models
tztztztztz/eqlv2
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection. https://arxiv.org/abs/2012.08548 https://arxiv.org/abs/2003.05176
tonytan48/KD-DocRE
Implementation of Document-level Relation Extraction with Knowledge Distillation and Adaptive Focal Loss
google-research/crest
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning
linzehui/Curriculum-Learning-PaperList-Materials
Curriculum Learning related papers and materials
tonytan48/Re-DocRED
rudongyu/LogiRE
Learning Logic Rules for Document-Level Relation Extraction
Veronicium/Eider
Source code for paper "EIDER: Empowering Document-level Relation Extraction with Efficient Evidence Extraction and Inference-stage Fusion", ACL Findings, 2022
AlanChou/Super-Loss
PyTorch implementation of the paper "SuperLoss: A Generic Loss for Robust Curriculum Learning" in NIPS 2020.
otiliastr/coarse-to-fine-curriculum
Coarse-to-Fine Curriculum Learning
yxuansu/HCL
[ACL'21] Dialogue Response Selection with Hierarchical Curriculum Learning
Guzpenha/transformers_cl
Code for the paper "Curriculum Learning Strategies for IR: An Empirical Study on Conversation Response Ranking" at ECIR'20
pkunlp-icler/GAIN
Source code for EMNLP 2020 paper: Double Graph Based Reasoning for Document-level Relation Extraction
adymaharana/curriculum_learning