Model Integration Request for medigan: 00013_C-DCGAN_MMG_MASSES
RichardObi opened this issue · 0 comments
RichardObi commented
Creator: unknown name
Affiliation: unknown affiliation
Stored in: https://sandbox.zenodo.org/record/1076278
Model Metadata:
"00013_C-DCGAN_MMG_MASSES": {
"execution": {
"package_name": "C-DCGAN_MMG_MASSES_BCDR_MAL_BEN",
"package_link": "https://sandbox.zenodo.org/record/1076278",
"model_name": "1250",
"extension": ".pt",
"image_size": [
128,
128
],
"dependencies": [
"numpy",
"torch",
"opencv-contrib-python-headless"
],
"generate_method": {
"name": "generate",
"args": {
"base": [
"model_file",
"num_samples",
"output_path",
"save_images"
],
"custom": {
"condition": null,
"z": null
}
},
"input_latent_vector_size": 100
}
},
"selection": {
"performance": {
"SSIM": null,
"MSE": null,
"NSME": null,
"PSNR": null,
"IS": null,
"FID": null,
"turing_test": null,
"downstream_task": {
"CLF": {}
}
},
"use_cases": [
"classification",
"malignant versus benign classification"
],
"organ": [
"breast",
"breasts",
"chest"
],
"modality": [
"MMG",
"Mammography",
"Mammogram",
"full-field digital",
"full-field digital MMG",
"full-field MMG",
"full-field Mammography",
"digital Mammography",
"digital MMG",
"x-ray mammography"
],
"vendors": [],
"centres": [],
"function": [
"noise to image",
"image generation",
"unconditional generation",
"data augmentation"
],
"condition": [],
"dataset": [
"CBIS-DDSM"
],
"augmentations": [
"horizontal flip",
"vertical flip"
],
"generates": [
"mass",
"masses",
"mass roi",
"mass ROI",
"mass images",
"mass region of interest",
"nodule",
"nodule",
"nodule roi",
"nodule ROI",
"nodule images",
"nodule region of interest"
],
"height": 128,
"width": 128,
"depth": null,
"type": "Conditional DCGAN",
"license": "MIT",
"dataset_type": "public",
"privacy_preservation": null,
"tags": [
"Breast",
"Mammogram",
"Mammography",
"Digital Mammography",
"Full field Mammography",
"Full-field Mammography",
"128x128",
"128 x 128",
"MammoGANs",
"Masses",
"Nodules"
],
"year": "2022"
},
"description": {
"title": "Conditional DCGAN Model for Patch Generation of Mammogram Masses Conditioned on Biopsy Proven Malignancy Status (Trained on BCDR)",
"provided_date": "June 2022",
"trained_date": "June 2022",
"provided_after_epoch": 1250,
"version": "1.0.0",
"publication": null,
"doi": [],
"comment": "A class-conditional deep convolutional generative adversarial network that generates mass patches of mammograms that are conditioned to either be benign (1) or malignant (0). Pixel dimensions are 128x128. The Cond-DCGAN was trained on MMG patches from the BCDR dataset (Lopez et al, 2012). The uploaded ZIP file contains the files 1250.pt (model weight), __init__.py (image generation method and utils), a requirements.txt, a LICENSE file, the MEDIGAN metadata, the used GAN training config file, a test.sh file to run the model, and two folders with a few generated images."
}
}
}