/Pranjali_MVRackLay

Primary LanguagePythonOtherNOASSERTION

MVRackLay: Monocular Multi-View Layout Estimation for Warehouse Rack and Shelves

Repository Structure

├── data # Store the *MVRackLay* data or custom data using *WareSynth* here.
├── racklay
│   ├── dataloader.py # Reading the data from the dataset and preparing it for training
│   ├── datasets.py
│   ├── __init__.py
│   ├── model.py
│   └── resnet_encoder.py 
│   ├── convlstm.py
│   ├── videolayout.py
├── splits
│   └── warehouse
│       ├── train_temporal_files.txt # Indices to files from the dataset used for training
│       └── val_temporal_files.txt # Indices to files from the dataset used for validation
├── eval_vracklay.py # Get metrics (mIOU and mAP) 
├── train.py
└── utils.py 

Installation

We recommend setting up a Python 3.7 Virtual Environment and installing all the dependencies listed in the requirements file.

git clone https: https://github.com/pranjali-pathre/MVRackLay

cd MVRackLay
pip install -r requirements.txt

Download MVRackLay Dataset

https://tinyurl.com/yxmu5t64

Training

Example code for training MVRacklay is provided below.

python train.py 
--model_name videolayout 
--seq_len 4 --type both 
--batch_size 2 
--num_epochs 73 
--split warehouse 
--data_path ./data/afinalData/ 
--num_racks 3 
--log_frequency 3 
--occ_map_size 512

Evaluation

For evaluating a trained model use eval.py by specifying the mode used for training, the data split on which to evaluate as well as the path to the trained model directory.

python eval_vracklay.py  
--pretrained_path ./models/videolayout/warehouse/weights_72/ 
--split warehouse 
--seq_len 4 
--type <both/topview/frontview>
--num_racks 3 
--occ_map_size 512