/mujoco_ocs2_cartpole

control cartpole with mpc in ocs2 and use mujoco as backend

Primary LanguageC++MIT LicenseMIT

Cartpole MPC

[TOC]

Modeling of Cartpole

Symbol Parameter Unit
$\phi$ Angle of Pole rad
x Displacement of Cart m
m, M Mass of Pole and Cart Kg
l Half Length of Pole m
$I$ Moment of inertial of Pole Kgm^2
P N Perpendicular and Horizontal Force From Cart to Pole N

$$ M\ddot{x} + N = F\\ I\ddot{\phi} = -Plsin\phi-Nlcos\phi\\ N = m\frac{d^2}{dt^2}(x+lsin\phi)=m\ddot x+mlc_\phi\ddot\phi-mlc_\phi\dot\phi^2 \\ P = -mg - m\frac{d^2}{dt^2}(lcos\phi)=-mg+mls_\phi\ddot\phi+ mls_\phi\dot\phi^2 $$

Change into Standard Dynamic Equation and System Flow Map $$ \begin{bmatrix} I+ml^2&mlc_\phi\ mlc_\phi&M+m \end{bmatrix}\begin{bmatrix} \ddot\phi\ \ddot x \end{bmatrix} = \begin{bmatrix} ml^2c_{2\phi}\dot\phi+mgls_\phi\ F+ml^2s_\phi\dot\phi^2 \end{bmatrix} $$

$$ \mathbf{\dot x} = \begin{bmatrix} \ddot\phi\\ \ddot x \end{bmatrix} = \begin{bmatrix} I+ml^2&mlc_\phi\\ mlc_\phi&M+m \end{bmatrix}^{-1}\begin{bmatrix} ml^2c_{2\phi}\dot\phi+mgls_\phi\\ F+ml^2s_\phi\dot\phi^2 \end{bmatrix} $$

Cost Function

$$ \begin{split}\label{eq:OCProblem} \begin{cases} \underset{\mathbf u(.)}{\min} \ \ \sum_i \phi_i(\mathbf x(t_{i+1})) + \displaystyle \int_{t_i}^{t_{i+1}} l_i(\mathbf x(t), \mathbf u(t), t) , dt \\ \text{s.t.} \ \ \mathbf x(t_0) = \mathbf x_0 ,\hspace{12em} \text{initial state} \\ \ \ \ \ \ \dot{\mathbf x}(t) = \mathbf f(\mathbf x(t), \mathbf u(t), t) \hspace{8em} \text{system flow map} \\ \ \ \ \ \ \ \mathbf{u_min}\leq\mathbf{u(t)}\leq\mathbf{u_max} ,\hspace{10em} \text{input constraint}\\ \end{cases} \end{split} $$

$$ l_i = 0.5(x-x_{n})' Q (x-x_{n}) + 0.5(u-u_{n})' R (u-u_{n}) \\ \phi_i = 0.5(x-x_{n})' Q (x-x_{n}) $$

Construct Inequality Constraint using Augmented Lagrangian Methods

Pinocchio Model Settings

Pinocchio Interface was created first using urdf file.

info record the number of states, mass of links and so on, which is used to generate dynamicConstraints for optimization problem.

 // create pinocchio interface
 pinocchioInterfacePtr_.reset(new PinocchioInterface(createPinocchioInterface(urdfFile)));
 info = cp_interface::createCartPoleModelInfo(*pinocchioInterfacePtr_);

Finally, create cartPoleSystemDynamics which consists of systemFlowMap

// Dynamics
problem_.dynamicsPtr.reset(new CartPoleSytemDynamics_pinocchio(info, libraryFolder, verbose));

Mujoco MRT Interface

MRT Node is the interface between MPC Node and Dummy Simulation Node

MRT_Dummy_ROS_Loop gives the ROS communication process of simulation.

Mujoco_MRT_Loop inherit MRT_Dummy_ROS_Loop and override modifyobseravation().

First you need to use /path/to/mujoco/bin/compile to compile the cartpole.urdf file which is just used in pinocchio.

/path/to/mujoco/bin/compile cartpole.urdf cartpole.xml

Some modification need to be applied to the xml file. (adding global options and actuator) Please check the cartpole.xml file.

The export environment variables such that cmake can find Mujoco.

export MUJOCO_INSTALL_INCLUDE=/path/to/mujoco/include
export MUJOCO_INSTALL_BIN=/path/to/mujoco/build/bin
export MUJOCO_INSTALL_LIB=/path/to/mujoco/build/lib

In modificationObservation function, mjData.state was set to the newest, and mjData.ctrl was updated to newest policy. Then use the mjstep1 to update system, and update the observation.

There seems to be something wrong ... mrt system will apply policy once there is a message received and then step into forward() to update observation. If I use mj_step1 to update the observation again in modify()method, policy will not align with the observation. This seems to cause some problem. Maybe I will write a new Interface Class to communicate with mujoco better.

The reason why I use mujoco as the back end is that the sensor interface of mujoco is simpler than that of gazebo . So if you just want to update sensor information like camera or force sensor you can do that in modify() method without mj_step1.