[Paper
] [Project Page
] [HF demo depth
] [HF demo normals
] [BibTeX
]
- 2024-10-23: Training code release.
- 2024-09-24: Evaluation code release.
- 2024-09-18: Inference code release.
Tested with Python 3.10.
- Clone repository:
git clone https://github.com/VisualComputingInstitute/diffusion-e2e-ft.git
cd diffusion-e2e-ft
- Install dependencies:
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
The following checkpoints are available for inference. Note that the Marigold (Depth) and GeoWizard (Depth & Normals) diffusion estimators are the official checkpoints provided by their respective authors and were not trained by us. Following the Marigold training regimen, we have trained a Marigold diffusion estimator for normals.
"E2E FT" denotes models we have fine-tuned end-to-end on task-specific losses, either starting from the pretrained diffusion estimator or directly from Stable Diffusion.
Since the fine-tuned models are single-step deterministic models, the noise should always be zeros
and the ensemble size and number of inference steps should always be 1
.
Models | Diffusion Estimator | Stable Diffusion + E2E FT | Diffusion Estimator + E2E FT |
---|---|---|---|
Marigold (Depth) | prs-eth/marigold-depth-v1-0 |
GonzaloMG/stable-diffusion-e2e-ft-depth |
GonzaloMG/marigold-e2e-ft-depth |
Marigold (Normals) | GonzaloMG/marigold-normals |
GonzaloMG/stable-diffusion-e2e-ft-normals |
GonzaloMG/marigold-e2e-ft-normals |
GeoWizard (Depth&Normals) | lemonaddie/geowizard |
N/A | GonzaloMG/geowizard-e2e-ft |
- Marigold checkpoints:
python Marigold/run.py \
--checkpoint="GonzaloMG/marigold-e2e-ft-depth" \
--modality depth \
--input_rgb_dir="input" \
--output_dir="output/marigold_ft"
python Marigold/run.py \
--checkpoint="GonzaloMG/marigold-e2e-ft-normals" \
--modality normals \
--input_rgb_dir="input" \
--output_dir="output/marigold_ft"
Argument | Description |
---|---|
--checkpoint |
Hugging Face model path. |
--modality |
Output modality; depth or normals . |
--input_rgb_dir |
Path to the input images. |
--output_dir |
Path to the output depth or normal images. |
--denoise_steps |
Number of inference steps; default 1 for E2E FT models. |
--ensemble_size |
Number of samples for ensemble; default 1 for E2E FT models. |
--timestep_spacing |
Defines how timesteps are distributed; trailing or leading ; default trailing for the fixed inference schedule. |
--noise |
Noise types; gaussian , pyramid , or zeros ; default zeros for E2E FT models. |
--processing_res |
Resolution the model uses for generation; 0 for matching the RGB input resolution; default 768 . |
--output_processing_res |
If True , the generated image is not resized to match the RGB input resolution; default False . |
--half_precision |
If True , operations are performed in half precision; default False . |
--seed |
Sets the seed. |
--batch_size |
Batched inference when ensembling; default 1 . |
--resample_method |
Resampling method used for resizing the RGB input and generated output; bilinear , bicubic , or nearest ; default bilinear . |
- GeoWizard checkpoints:
python GeoWizard/run_infer.py \
--pretrained_model_path="GonzaloMG/geowizard-e2e-ft" \
--domain indoor \
--input_dir="input" \
--output_dir="output/geowizard_ft"
Argument | Description |
---|---|
--pretrained_model_path |
Hugging Face model path. |
--domain |
Domain with respect to the RGB input; indoor , outdoor , or object . |
--input_dir |
Path to the input images. |
--output_dir |
Path to the output depth and normal images. |
--denoise_steps |
Number of inference steps; default 1 for E2E FT models. |
--ensemble_size |
Number of samples for ensemble; default 1 for E2E FT models. |
--timestep_spacing |
Defines how timesteps are distributed; trailing or leading ; default trailing for the fixed inference schedule. |
--noise |
Noise types; gaussian , pyramid , or zeros ; default zeros for E2E FT models. |
--processing_res |
Resolution the model uses for generation; 0 for matching the RGB input resolution; default 768 . |
--output_processing_res |
If True , the generated image is not resized to match the RGB input resolution; default False . |
--half_precision |
If True , operations are performed in half precision; default False . |
--seed |
Sets the seed. |
By using the correct trailing
timestep spacing, it is possible to sample single to few-step depth maps and surface normals from diffusion estimators. These samples will be blurry but become sharper by increasing the number of inference steps, e.g., from 10
to 50
. Metrics can be improved by increasing the ensemble size, e.g., to 10
. Since diffusion estimators are probabilistic models, the noise setting can be adjusted to either gaussian
noise or multiresolution pyramid
noise.
Our single-step deterministic E2E FT models outperform the previously mentioned diffusion estimators.
Depth Method | Inference Time | NYUv2 AbsRelβ | KITTI AbsRelβ | ETH3D AbsRelβ | ScanNet AbsRelβ | DIODE AbsRelβ |
---|---|---|---|---|---|---|
Stable Diffusion + E2E FT | 121ms | 5.4 | 9.6 | 6.4 | 5.8 | 30.3 |
Marigold + E2E FT | 121ms | 5.2 | 9.6 | 6.2 | 5.8 | 30.2 |
GeoWizard + E2E FT | 254ms | 5.6 | 9.8 | 6.3 | 5.9 | 30.6 |
Normals Method | Inference Time | NYUv2 Meanβ | ScanNet Meanβ | iBims-1 Meanβ | Sintel Meanβ |
---|---|---|---|---|---|
Stable Diffusion + E2E FT | 121ms | 16.5 | 15.3 | 16.1 | 33.5 |
Marigold + E2E FT | 121ms | 16.2 | 14.7 | 15.8 | 33.5 |
GeoWizard + E2E FT | 254ms | 16.1 | 14.7 | 16.2 | 33.4 |
Inference time is for a single 576x768-pixel image, evaluated on an NVIDIA RTX 4090 GPU.
We utilize the official Marigold evaluation pipeline to evaluate the affine-invariant depth estimation checkpoints, and we use the official DSINE evaluation pipeline to evaluate the surface normals estimation checkpoints. The code has been streamlined to exclude unnecessary parts, and changes have been marked.
The Marigold evaluation datasets can be downloaded to data/marigold_eval/
at the root of the project using the following snippet:
wget -r -np -nH --cut-dirs=4 -R "index.html*" -P data/marigold_eval/ https://share.phys.ethz.ch/~pf/bingkedata/marigold/evaluation_dataset/
After downloading, the folder structure should look as follows:
data
βββ marigold_eval
βββ diode
β βββ diode_val.tar
βββ eth3d
β βββ eth3d.tar
βββ kitti
β βββ kitti_eigen_split_test.tar
βββ nyuv2
β βββ nyu_labeled_extracted.tar
βββ scannet
βββ scannet_val_sampled_800_1.tar
Run the 0_infer_eval_all.sh
script to evaluate the desired model on all datasets.
./experiments/depth/eval_args/marigold_e2e_ft/0_infer_eval_all.sh
./experiments/depth/eval_args/stable_diffusion_e2e_ft/0_infer_eval_all.sh
./experiments/depth/eval_args/geowizard_e2e_ft/0_infer_eval_all.sh
The evaluation results for the selected model are located in the experiments/depth/marigold
directory. For a given dataset, the script first performs the necessary inference, storing the estimations in a prediction
folder. Later, these depth maps are aligned and evaluated against the ground truth. Metrics and evaluation settings are available as .txt
files.
<model>
βββ <dataset>
βββ arguments.txt
βββ eval_metric
β βββ eval_metrics-least_square.txt
βββ prediction
The DSINE evaluation datasets (dsine_eval.zip
) should be extracted into the data
folder at the root of the project.
The folder structure should look as follows:
data
βββ dsine_eval
βββ ibims
βββ nyuv2
βββ oasis
βββ scannet
βββ sintel
βββ vkitti
Run the following commands to evaluate the models on all datasets.
python -m DSINE.projects.dsine.test \
experiments/normals/eval_args/marigold_e2e_ft.txt \
--mode benchmark
python -m DSINE.projects.dsine.test \
experiments/normals/eval_args/stable_diffusion_e2e_ft.txt \
--mode benchmark
python -m DSINE.projects.dsine.test \
experiments/normals/eval_args/geowizard_e2e_ft.txt \
--mode benchmark
Evaluation results are saved in the experiments/normals/dsine
folder. This includes the used settings (params.txt
) and the metrics for each <dataset>
(metrics.txt
).
dsine
βββ <model-type/model>
βββ log
β βββ params.txt
βββ test
βββ <dataset>
βββ metrics.txt
The fine-tuned models are trained on the Hypersim and Virtual KITTI 2 datasets.
Download the Hypersim dataset using the dataset_download_images.py script and unzip the files to data/hypersim/raw_data
at the root of the project. Download the scene split file from the Hypersim repository and place it in data/hypersim
.
data
βββ hypersim
βββ metadata_images_split_scene_v1.csv
βββ raw_data
βββ ai_001_001
βββ ...
βββ ai_055_010
Run Marigold's preprocessing script, which will save the processed data to data/hypersim/processed
.
python Marigold/script/dataset_preprocess/hypersim/preprocess_hypersim.py \
--split_csv data/hypersim/metadata_images_split_scene_v1.csv
Download the surface normals in png
format using Hypersim's download.py
script.
./download.py --contains normal_cam.png --silent
Place the downloaded surface normals in data/hypersim/processed/normals
.
The final processed file structure should look like this:
data
βββ hypersim
βββ processed
βββ normals
β βββ ai_001_001
β βββ ...
β βββ ai_055_010
βββ train
βββ ai_001_001
βββ ...
βββ ai_055_010
βββ filename_meta_train.csv
Download the RGB (vkitti_2.0.3_rgb.tar
) and depth (vkitti_2.0.3_depth.tar
) files from the official website. Place them in data/virtual_kitti_2
at the root of the project and finally extract them using the following shell commands.
mkdir vkitti_2.0.3_rgb && tar -xf vkitti_2.0.3_rgb.tar -C vkitti_2.0.3_rgb
mkdir vkitti_2.0.3_depth && tar -xf vkitti_2.0.3_depth.tar -C vkitti_2.0.3_depth
Virtual KITTI 2 does not provide surface normals. Therefore, we estimate them from the depth maps using discontinuity-aware gradient filters. Run our provided script to generate the normals which will be saved to data/virtual_kitti_2/vkitti_DAG_normals
.
python depth-to-normal-translator/python/gen_vkitti_normals.py
The final processed file structure should look like this:
data
βββ virtual_kitti_2
βββ vkitti_2.0.3_depth
β βββ Scene01
β βββ Scene02
β βββ Scene06
β βββ Scene18
β βββ Scene20
βββ vkitti_2.0.3_rgb
β βββ Scene01
β βββ Scene02
β βββ Scene06
β βββ Scene18
β βββ Scene20
βββ vkitti_DAG_normals
βββ Scene01
βββ Scene02
βββ Scene06
βββ Scene18
βββ Scene20
To train the end-to-end fine-tuned depth and normals models, run the scripts in the training/scripts
directory:
./training/scripts/train_marigold_e2e_ft_depth.sh
./training/scripts/train_stable_diffusion_e2e_ft_depth.sh
./training/scripts/train_marigold_e2e_ft_normals.sh
./training/scripts/train_stable_diffusion_e2e_ft_normals.sh
./training/scripts/train_geowizard_e2e_ft.sh
The fine-tuned models will be saved to model-finetuned
at the root of the project.
model-finetuned
βββ <model>
βββ arguments.txt
βββ model_index.json
βββ text_encoder # or image_encoder for GeoWizard
βββ tokenizer
βββ feature_extractor
βββ scheduler
βββ vae
βββ unet
Note
For multi GPU training, set the desired number of devices and nodes in the training/scripts/multi_gpu.yaml
file and replace accelerate launch
with accelerate launch --multi_gpu --config_file training/scripts/multi_gpu.yaml
in the training scripts.
If you use our work in your research, please use the following BibTeX entry.
@article{martingarcia2024diffusione2eft,
title = {Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think},
author = {Martin Garcia, Gonzalo and Abou Zeid, Karim and Schmidt, Christian and de Geus, Daan and Hermans, Alexander and Leibe, Bastian},
journal = {arXiv preprint arXiv:2409.11355},
year = {2024}
}