“A Novel Recurrent Encoder-Decoder Structure for Large-Scale Multi-view Stereo Reconstruction from An Open Aerial Dataset” (CVPR 2020)
The proposed network was trained and tested on a single NVIDIA TITAN RTX 2080Ti (24G).
This project is based on the implementation of MVSNet-pytorch. Thank the author for providing the source code (https://github.com/xy-guo/MVSNet_pytorch)
- python 3.7 (Anaconda)
- pytorch 1.1.0
- Download the WHU MVS dataset. http://gpcv.whu.edu.cn/data/WHU_dataset/WHU_MVS_dataset.zip.
(The link in baidu disk: https://pan.baidu.com/s/1aGHFfW26Q8T4oCVa2tPZYQ code:91ae) - Unzip the dataset to the
WHU_MVS_dataset
folder.
- In
train.py
, setmode
totrain
, setmodel
torednet
- In
train.py
, settrainpath
to your train data pathYOUR_PATH/WHU_MVS_dataset/train
, settestpath
to your train data pathYOUR_PATH/WHU_MVS_dataset/test
- Train REDNet (TITAN RTX 2080Ti 24G):
python train.py
- In
train.py
, settestpath
to your train data pathYOUR_PATH/WHU_MVS_dataset/test
, setloadckpt
to your model path./checkpoints/whu_rednet/model_000005.ckpt
, set depth sample numbernumdepth
. - Run REDNet:
python train.py
The test outputs are stored in YOUR_PATH/WHU_MVS_dataset/test/depths_rednet/
, including depth map XXX_init.pfm
, probability map XXX_prob.pfm
, scaled images XXX.jpg
and camera parameters XXX.txt
.