最近整理的生物信息方面的导师,会持续更新,仅供大家参考

知乎地址:生物信息学导师推荐 - Jade的文章 - https://zhuanlan.zhihu.com/p/441702265

一:表观遗传组学:

Dana-Farber and Harvard Medical School

刘小乐

主要方向:整合分析全基因组ChIP-chip/Seq、核小体定位、组蛋白修饰数据、开发生物信息学算法

主要成果:开发Model-based analysis of ChIP-Seq (MACS)、Cistrome数据库

Homepage: Liu Lab

Bradley E. Bernstein

主要方向:Epigenomic Regulation in Development and Cancer

主要成果:The NIH Roadmap Epigenomics Mapping Consortium

Homepage: https://bernstein.dfci.harvard.edu/

Nancy Kleckner

主要方向:The Physical Biology of Chromosomes 主要成果:3C(Capturing Chromosome Conformation,通讯)

Homepage: Nancy Kleckner

University of Massachusetts Medical School

Job Dekker

主要方向:Genome folding;Genetic and spatial organization of the extraordinary dinoflagellate chromosomes

主要成果:3C(Capturing Chromosome Conformation,一作);Hi-C

Homepage: Job Dekker - Dekker Lab

The Jackson Laboratory

阮一俊

主要方向:3D genome biology

主要成果:ChIA-PET;参与ENCODE计划

Homepage: Yijun Ruan

University of California, Irvine

李蔚(导师:陈润生)

主要方向: 染色质修饰与基因调控、DNA 甲基化

主要成果:RSeQC: quality control of RNA-seq experiments

Homepage: UC Irvine - Faculty Profile System - Wei Li

Fred Hutchinson Cancer Research Center

Steven Henikoff

主要方向:genomic tools to the study of proteins of the epigenome: histones, transcription factors, nucleosome remodelers, and RNA polymerase II (RNAPII)

主要成果:ChEC-seq;DNase-seq;CUT&Tag;CUT&Run;CUT&Tag2for1;MulTI-Tag

Homepage: https://research.fredhutch.org/henikoff/en.html

University of California San Diego

任兵

主要方向:非编码序列如何指导基因表达的时空模式,表观遗传机制如何在发育过程中调节这些序列的作用

主要成果:chip-chip;识别和表征增强子的转录控制元件;Paired-seq;Paired-tag

Homepage: Bing Ren, Ph.D.

Massachusetts Institute of Technology(MIT)

Manolis Kellis

主要方向:epigenetic modifications to define chromatin states;comparative genomics;annotation of the non-coding genome;Regulatory Networks

主要成果:参与构建ENCODE数据库;ChromHMM: automating chromatin-state discovery and characterization

Homepage: Manolis Kellis (Kamvysselis)

Stanford University

William Greenleaf(导师:谢晓亮)

主要方向:UNDERSTANDING THE PHYSICAL GENOME;HIGH-THROUGHPUT BIOPHYSICS & MOLECULAR EVOLUTION;DNA ACCESSIBILITY & CHROMATIN STRUCTURE

主要成果:ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide

Homepage: https://greenleaf.stanford.edu/

张元豪

主要方向:细胞染色质可及性和异质性的研究

主要成果:scATAC-seq

Homepage: https://profiles.stanford.edu/howard-chang

Cold Spring Harbor Laboratory

张奇伟

主要方向:启动子鉴定;RNA剪切事件检测

主要成果:CEPDB;CSEdb;CIPHER;ESEfinder

Homepage: Michael Q. Zhang's Lab: People

北京大学

汤富酬

主要方向:人类早期胚胎以及生殖系细胞发育的单细胞功能基因组学研究

主要成果:单细胞转录组测序技术的开发(mRNA-Seq whole-transcriptome analysis of a single cell)

Homepage: 汤富酬-北京未来基因诊断高精尖创新中心

清华大学

颉伟(导师:任兵)

主要方向:动物胚胎早期发育过程中的表观遗传调控;动物胚胎早期发育过程中的表观遗传调控

主要成果:哺乳动物胚胎发育过程中表观图谱的构建

Homepage: 颉 伟-清华大学生命学院

NIH

赵可吉

主要方向:哺乳动物发育和分化的表观遗传机制研究

主要成果:人类组蛋白甲基化图谱构建、人类核小体定位图谱构建

Homepage: https://irp.nih.gov/pi/keji-zhao

北京基因组所:

刘江

主要方向:表观遗传修饰如何从父母遗传到子代的遗传和进化规律进行研究

主要成果:

Homepage: **科学院北京基因组研究所(国家生物信息中心)

同济大学

张勇(导师:刘小乐)

主要方向:表观遗传组学算法的开发、组蛋白干细胞分化以及胚胎发育

主要成果:MACS(张勇第一作者,刘小乐通讯作者)

Homepage: https://zhanglab.tongji.edu.cn/index.htm

二:基因组学

Broad Institute of MIT and Harvard

Eric S. Lander

主要方向:human genetic variation; human population history; genome evolution; regulatory elements; long non-coding RNAs; three-dimensional folding of the human genome; and genome-wide screens to discover the genes essential for biological processes using CRISPR-based genome editing

主要成果:Broad Institute创始人、人类基因组计划首席科学家、GATK、IGV

Homepage: Eric S. Lander

Genentech

Aviv Regev

主要方向:single-cell genomics;The evolution of gene regulation;networks that regulate genes, define cells and tissues, and influence health and disease

主要成果:Fungal orthogroups;Cancer module map;Module networks;international Human Cell Atlas project首席科学家

Homepage: https://www.broadinstitute.org/regev-lab

Dana-Farber and Harvard Medical School

李恒

主要方向:比对等算法开发

主要成果:SAM格式设计;SAMtools;bwa;Minimap2;Chromap

Homepage: Heng Li's Homepage

Massachusetts Institute of Technology

Bonnie Berger

主要方向:Computational molecular biology;Network Inference;PPI networks;protein structural motif recognition and discovery;Compressive Genomics;molecular self-assembly and mis-assembly, and functional genomics

主要成果:Global alignment of multiple protein interaction networks with application to functional orthology detection

Homepage: Bonnie Berger | MIT Mathematics

Children's Hospital of Philadelphia

王凯

主要方向:bioinformatics methods to advance genomic medicine, deep neural network for long-read sequencing, deep phenotyping on electronic health records, graduate rotation and undergraduate research projects

主要成果:ANNOVAR, wANNOVAR, PennCNV

Homepage: Wang Lab

北京大学

谢晓亮

主要方向:单细胞全基因组学;单分子酶学;单分子生物物理化学

主要成果:多重退火循环扩增法(MALBAC)

Homepage: 谢晓亮-北京未来基因诊断高精尖创新中心

张泽民

主要方向:单细胞技术研究肿瘤生物学

主要成果:GEPIA web server、构建多种肿瘤单细胞图谱

Homepage: http://cancer-pku.cn/

李程(导师:王永雄)

主要方向:肿瘤突变的检测以及基因组突变和基因表达的调控关系

主要成果:Combat;3Disease Browser;突变图谱的构建。

Homepage: 北京大学统计科学中心

清华大学:

张学工

主要方向:机器学习与生物和医学大数据分析、人类细胞图谱与人体系统数字孪生、单细胞生物信息学分析

Homepage: 张学工-清华大学自动化系

中山大学

吴仲义

主要方向:分子进化、群体基因组学、进化基因组学

Homepage: http://sklbc.sysu.edu.cn/teacher/202

西湖大学

杨剑

主要方向:通过GWAS检测基因组变异、高性能计算生物学分析方法和工具的开发、以及疾病的遗传风险评估

主要成果:GCTA、SMR、OSCA、fastGWA以及fastGWA-GLMM

Homepage: https://sls.westlake.edu.cn/Our_Faculty/202007/t20200717_6659.shtml

The University of Texas MD Anderson Cancer Center

Nicholas Navin

主要方向:Single Cell Genomics; Cancer Evolution;development of single cell genome sequencing technologie;study cancer as an evolutionary process in which clones undergo selection and expansion in response to selective pressures

主要成果:Tumour evolution inferred by single-cell sequencing(Nature 2011)

Homepage: https://faculty.mdanderson.org/profiles/nicholas_navin.html

University of Michigan

张建之

主要方向:计算分子进化;进化基因组学

Homepage: Jianzhi Zhang | U-M LSA Ecology and Evolutionary Biology (EEB)

University of Chicago

龙漫远

主要方向:Evolution of gene essentiality in development;Evolutionary analysis of gene interactions with new genes

Homepage: | Ecology & Evolution

University College London

杨子恒

主要方向:develop statistical models and computer software for population genetic and phylogenetic

主要成果:BP&P: Bayesian analysis of genomic sequence data under the multispecies coalescent model;Phylogenetic analysis by maximum likelihood (PAML)

Homepage: http://abacus.gene.ucl.ac.uk/

复旦大学

金力

主要方向:人类群体遗传学和基因组学、医学遗传学及遗传流行病学(心血管疾病、风湿病、肿瘤等)、计算生物学

Homepage: 金力

Carnegie Mellon University

马坚

主要方向:机器学习算法的开发;人类基因组结构和功能与疾病的联系;智能医疗和智能健康;多模态数据整合

主要成果:Infinite Sites Model、InferCARs、Nucleome Browser

Homepage: Carnegie Mellon School of Computer Science

**农业科学院农业基因组研究所

阮珏

主要方向:基因组组装算法、极低频点突变检测、基因组结构变异检测

主要成果:Pseudo-sanger、wtdbg2、SMARTdenovo

Homepage: **农科院基因组所

St. Jude Children's Research Hospital

Jinghui Zhang

主要方向:the development of highly accurate and sensitive computational methods for analyzing large-scale genomic data, especially in the area of detecting and analyzing genetic variations and somatic mutations

主要成果:参与人类基因组计划;开发BLAST(co-author);CREST maps somatic structural variation in cancer genomes with base-pair resolution(Nature Methods 2011);Copy Number Segmentation by Regression Tree in Next Generation Sequencing(Nature Methods 2015)

Homepage: https://www.stjuderesearch.org/site/lab/zhang

上海交通大学瑞金医院

方海(没有找到主页)

主要方向:GWAS治疗靶点转化研究

主要成果:A genetics-led approach defines the drug target landscape of 30 immune-related traits(Nature Genetics 2019)

Homepage: https://www.nature.com/articles/s41588-019-0456-1#code-availability

三:RNA组学

**科学院大学生物物理所

陈润生(**生信第一人)

主要方向:胚胎早期发育以及干细胞重编程过程中长非编码RNA以及编码小肽的系统发现和功能机制研究

主要成果:参加人类基因组1%和水稻基因组工作草图的研究;非编码RNA数据库NONCODE;

数据库NPInter(非编码RNA与其它生物大分子相互作用)

Homepage: 陈润生-**科学院大学-UCAS

Stanford University

王永雄 Wing Hung Wong

主要方向:贝叶斯统计、计算生物学;基因调控网络

主要成果:采样算法并应用到贝叶斯推理的方法;开发了微阵列基因芯片表达数据和RNA测序数据分析的创新模型和方法

Homepage: Welcome to the Wong Lab

北京大学

高歌

主要方向:围绕基因型-表型关系的研究,基于统计建模与机器学习的生物学大数据整合与挖掘、以基因表达为中心的调控通路功能及演化、基于组学大数据的精准医学

主要成果:

Homepage: Bioinformatics and Computational Genomics

崔庆华

主要方向:心脑血管疾病、癌症、糖尿病等重大复杂疾病关键miRNA/lncRNA的计算机识别;miRNA/lncRNA在疾病中调控规律的数据挖掘;基于RNA的计算机辅助药物研发等

主要成果:LncRNADisease: a database for long-non-coding RNA-associated diseases(Nucleic Acids Research 2013);Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases(Bioinformatics 2010)

Homepage: 北京大学基础医学院

清华大学

鲁志

主要方向:动植物中编码和非编码RNA的转录后调控研究 、癌症等疾病中新型RNA分子标识物的发现和机理研究、 机器学习等数据挖掘技术的研究及其在基因组学大数据上的应用

Homepage: 鲁 志-清华大学生命学院

张强锋(导师:Howard Y. Chang)

主要方向:使用高通量深度测序的手段来探测RNA二级结构和计算建模,RNA功能模体(motif)等有效预测或发现方法,蛋白-蛋白、RNA-RNA、以及蛋白-RNA相互作用网络

主要成果:VRmol: an Integrative Web-Based Virtual Reality System to Explore Macromolecular Structure (Bioinformatics 2020);RISE: a database of RNA interactome from sequencing experiments(Nucleic Acids Res 2018)

Homepage: 张强锋实验室

University of California San Diego

Gene Yeo

主要方向:manipulating RNA processing in development and disease using induced pluripotent stem cell and murine models; RNA genomics technology and therapeutics development

主要成果:seCLIP

Homepage: Institute for Genomic Medicine

中科院上海营养与健康研究所

杨力

主要方向:构建高效计算生物学新体系,揭示外显子环形RNA在生成加工和功能作用水平的多层次调控新机制;开展大数据整合及计算生物学分析,主要发现RNA单碱基编辑和修饰互作的分子基础,并进一步利用核酸编辑酶构建高效基因组碱基编辑新体系

主要成果:Circular intronic long noncoding RNAs(Molecular cell 2015);Complementary sequence-mediated exon circularization(2014 Cell)

Homepage: 杨力----**科学院上海营养与健康研究所

The University of Texas MD Anderson Cancer Center

Han Liang(导师:Wen-Hsiung Li)

主要方向:bioinformatics tool development, integrated cancer genomic analysis, RNA regulation/modification, and cancer systems biology

主要成果:Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer;TANRIC: an interactive open platform to explore the function of lncRNAs in cancer

Homepage: https://faculty.mdanderson.org/profiles/liang_han.html

浙江大学

郭国骥

主要方向:单细胞RNA组学

主要成果:Construction of a human cell landscape at single-cell level(Cell 2020);

Mapping the Mouse Cell Atlas by Microwell-Seq(Cell 2018)

Homepage: 郭国骥-浙江大学个人主页

四:蛋白质组学

Eidgenössische Technische Hochschule Zürich

Ruedi Aebersold

主要方向:One of the pioneers in the field of proteomics, Mass Spectrometry, Systems Biology, Bioinformatics,

主要成果:ICAT & SRM & SWATH

Homepage: Ruedi Aebersold

Max-Planck-Institute of Biochemistry

Matthias Mann

主要方向:Mass Spectrometry, Systems Biology, Bioinformatics, Signal Transduction, Posttranslational modifications, Metabolic diseases, Clinical proteomics, Cancer

主要成果:SILAC & MaxQuant

Homepage: Mann lab

Scripps Research Institute

John R Yates III

主要方向:Mass Spectrometry, Bioinformatics,

主要成果:SEQUEST & MudPIT

Homepage: Yates Lab

西湖大学

郭天南

主要方向:开发前沿蛋白质组学技术,用于高通量地从最少量的临床样本精确定量最多的蛋白质,推动定量蛋白质组学的研究;生物标记的鉴定

主要成果:Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps(2015);Multi-organ proteomic landscape of COVID-19 autopsies(2020)

Homepage: Guomics Laboratory

暨南大学

张弓

主要方向:翻译组学

主要成果:FANSe系列超高精度大规模测序序列比对算法;建立了翻译中mRNA与蛋白质丰度之间的定量关系,将中心法则定量化

Homepage: Translatomics Lab 翻译组学实验室

五、计算结构生物学

Google DeepMind

Demis Hassabis(导师:Tomaso Poggio)

主要方向:neuroscience and artificial intelligence

主要成果:AlphaFold(通讯)

Homepage: About

John Jumper

主要方向:protein structure prediction

主要成果:AlphaFold(一作)

Homepage: Science Team

The University of Washington

David Baker

主要方向:Deep learning for protein structure refinement and protein design; Designing molecular switches, enzymes, and motors; Designing delivery vehicles for targeted intracellular delivery of biologics

主要成果:Protein Structure Prediction Using Rosetta(Methods in enzymology 2004)

Homepage: https://www.bakerlab.org/

Tel Aviv University

Nir Ben-Tal

主要方向:computational structural biology, including both methods development and applications to selected problems

主要成果:ConSurf、Rate4Site

Homepage: https://en-lifesci.tau.ac.il/profile/bental

Max Planck Institute for Developmental Biology

Andrei N. Lupas

主要方向:Protein Evolution

主要成果:Predicting coiled coils from protein sequences

Homepage: https://www.mpg.de/459944/developmental-biology-lupas

Johannes Söding

主要方向:protein function and structure prediction;sequence search and assembly in metagenomics

主要成果:The HHpred interactive server for protein homology detection and structure prediction;

HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment

Homepage: https://www.mpibpc.mpg.de/soeding

University of Texas Southwestern Medical Center

Nick Grishin

主要方向:develop new computational approachesto explore protein sequence-structure

主要成果:PROMALS3D: a tool for multiple protein sequence and structure alignments;AL2CO: calculation of positional conservation in a protein sequence alignment;ECOD;ProSMoS;

Homepage: Grishin Lab: Home Page

University of Michigan Medical School

Yang Zhang

主要方向:develop bioinformatics approaches to predict the three-dimensional structures of proteins from amino acid sequences ;Assemble Protein Structures from Cryo-EM

主要成果:I-TASSER(通讯): a unified platform for automated protein structure and function prediction;TM-align: a protein structure alignment algorithm based on the TM-score;CR-I-TASSER: Assemble Protein Structures from Cryo-EM Density Maps using Deep Convolutional Neural Networks

Homepage: Yang Zhang, Ph.D. | Computational Medicine and Bioinformatics | Michigan Medicine

Memorial Sloan Kettering Cancer Center

Dana Pe'er

主要方向:combines single cell technologies, genomic datasets and machine learning algorithms to address fundamental questions in biomedical science

主要成果:Using Bayesian networks to analyze expression data(Journal of computational biology 2000)

Homepage: https://www.mskcc.org/research/ski/labs/dana-pe-er

南开大学

Jianyi Yang

主要方向:Protein structure and function prediction;Protein structure alignment;Protein-ligand binding site prediciton

主要成果:I-TASSER(一作)

Homepage: Yang Lab

六:计算神经生物学

The Center for Brains, Minds and Machines (CBMM) of MIT

Tomaso Poggio

主要方向:Brain Imaging;Cellular & Molecular Neuroscience;Cognitive Neuroscience;ComputationalNeuroscience

主要成果:Networks for approximation and learning;Face recognition: Features versus templates;

Hierarchical models of object recognition in cortex

Homepage: https://cbmm.mit.edu/about/people/poggio

复旦大学

赵兴明

主要方向:开发新的计算方法用于分子网络的构建和分析;脑核磁共振图像的处理;脑功能神经网络的构建和处理;疾病相关分子通路的识别;药物靶蛋白预测和药物重定位

主要成果:PhosD: inferring kinase–substrate interactions based on protein domains (Bioinformatics 2017);Prediction of drug combinations by integrating molecular and pharmacological data(PLoS computational biology 2011)

Homepage: http://comp-sysbio.org/

七:计算生物学(偏计算方向)

Stanford AI Lab

Daphne Koller

主要方向:Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival;Pathways Understanding;Study of Protein-Protein Interactions Using Probabilistic Graphical Models;Computer vision;Bayesian Network;Robotics

主要成果:Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network;

Continuous Time Bayesian Networks;Multi-Class Segmentation with Relative Location Prior

Homepage: Daphne Koller's Research Group

Weizmann Institute of Science

Nir Freidman

主要方向:combine advanced experimental and mathematical approaches to study intercellular communication;T cell activation and differentiation;Characterizing T cell receptor repertoires using high throughput sequencing (TCR-seq)

主要成果:Gaussian Process Networks

Homepage: https://www.weizmann.ac.il/immunology/NirFriedman/

北京大学

韩敬东

主要方向:开发数据整合和网络分析的计算方法;衰老的系统生物学研究

主要成果:Evidence for dynamically organized modularity in the yeast protein–protein interaction network;

Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq

Homepage: 韩敬东-北京大学前沿交叉学科研究院

The Chinese University of Hong Kong

Kevin Y Yip

主要方向:computational biology and bioinformatics (CBB);Whole-genome identification of sequence elements;Computational modeling of gene regulation

主要成果:参与ENCODE;Harp: A practical projected clustering algorithm

Homepage: Home of Kevin Yip

University of Pennsylvania

Nancy Ruonan Zhang

主要方向:Statistics, Computer Science, and Biology, seeking new ways to think about and work with genomic data

主要成果:参与ENCODE;Graph-based change-point detection;A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data;SAVER: gene expression recovery for single-cell RNA sequencing

Homepage: Department of Statistics and Data Science

Kai Tan

主要方向:using genomics and systems biology approaches to understand the gene regulatory factors underlying cellular processes

主要成果:Global view of enhancer–promoter interactome in human cells;A comparative genomics approach to prediction of new members of regulons

Homepage: https://www.med.upenn.edu/apps/faculty/index.php/g275/p8885111

Mingyao Li

主要方向:statistical genetics and genomics;use statistical and machine learning approaches to understand cellular heterogeneity ;characterize gene expression diversity across cell types;to study the patterns of cell state transition and crosstalk of various cells using data generated from single-cell transcriptomics studies

主要成果:MetaDiff;PennSeq

Homepage: https://www.med.upenn.edu/apps/faculty/index.php/g275/p8122973

UT Southwestern Medical Center

Jian Zhou

主要方向:Decoding Genomic Sequence;Evolution of Regulatory Genome;Data Science and AI Methods

主要成果:Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk;Predicting effects of noncoding variants with deep learning–based sequence model

Homepage: Jian Zhou - Home

Johns Hopkins University

Jean Fan

主要方向:develop methods for analyzing single-cell spatially resolved transcriptomic sequencing and imaging data;cellular heterogeneity on cancer pathogenesis and prognosis

主要成果:VeloViz: RNA-velocity informed embeddings for visualizing cellular trajectories;Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis;Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists

Homepage: Jean Fan - Johns Hopkins Biomedical Engineering

University of Michigan

Lana Garmire

主要方向:Integrative omics/clinic data analysis;Develop computational methods to analyze high-throughput data from next-generation sequencing

主要成果:Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data;Deep learning–based multi-omics integration robustly predicts survival in liver cancer;

Homepage: Lana Garmire, Ph.D. | Computational Medicine and Bioinformatics | Michigan Medicine

Univeristy of Hong Kong

Yuanhua Huang

主要方向:developing statistical machine learning methods and computational algorithms for analysing biomedical data, particularly single-cell genomic data

主要成果:BRIE: transcriptome-wide splicing quantification in single cells;Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference

Homepage: Huang Lab @ HKU Home