@inproceedings{he2023generalization,
title={A generalization of vit/mlp-mixer to graphs},
author={He, Xiaoxin and Hooi, Bryan and Laurent, Thomas and Perold, Adam and LeCun, Yann and Bresson, Xavier},
booktitle={International Conference on Machine Learning},
pages={12724--12745},
year={2023},
organization={PMLR}
}
conda create --name graph_mlpmixer python=3.8
conda activate graph_mlpmixer
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
conda install -c pyg pytorch-sparse
conda install -c pyg pytorch-scatter
conda install -c pyg pytorch-cluster
conda install -c pyg pyg
pip install ogb
conda install -c conda-forge rdkit
pip install yacs
pip install tensorboard
pip install networkx
pip install einops
# METIS
conda install -c conda-forge metis
pip install metis
See all available datasets under the train/
folder.
# Running Graph MLPMixer on simulation datasets
python -m train.exp
# Running Graph MLPMixer for ZINC
python -m train.zinc
# Running Graph MLPMixer for CIFAR10
python -m train.cifar10
# Running Graph MLPMixer on OGB datasets
python -m train.molhiv
# Running Graph MLPMixer on LRGB datasets
python -m train.peptides_func
See all available base MP-GNNs in core/model_utils/pyg_gnn_wrapper.py
.
python -m train.zinc model.gnn_type GCNConv
python -m train.zinc model.gnn_type ResGatedGraphConv
...
See core/config.py
for all options.
# Running Graph MLPMixer w/o NodePE
python -m train.zinc pos_enc.rw_dim 0 pos_enc.lap_dim 0
# Running Graph MLPMixer w/o PatchPE
python -m train.zinc model.patch_rw_dim 0
# Running Graph MLPMixer w/o data augmentation
python -m train.zinc metis.online False
# Running Graph MLPMixer w/o patch overlapping
python -m train.zinc metis.num_hops 0
# Running Graph MLPMixer w/ k-hop extension (replace k with 1,2,...)
python -m train.zinc metis.num_hops k
# Running Graph MLPMixer using random partition
python -m train.zinc metis.enable False
# Running Graph MLPMixer w/ different numbers of Patches P
python -m train.zinc metis.n_patches P
We provide five different versions of Graph ViT. The versions primarily differ in the graph-based multi-head attention (gMHA) function used.
# Hadamard Attention
python -m train.zinc model.gMHA_type Hadamard pos_enc.patch_num_diff 0
# Standard/Full Attention
python -m train.zinc model.gMHA_type Standard pos_enc.patch_num_diff -1
# Graph Attention
python -m train.zinc model.gMHA_type Graph pos_enc.patch_num_diff 0
# Kernel Attention
python -m train.zinc model.gMHA_type Kernel pos_enc.patch_num_diff 8
# Additive Attention
python -m train.zinc model.gMHA_type Additive pos_enc.patch_num_diff 0
Run MP-GNNs by setting n_patches to zero.
python -m train.zinc model.name MPGNN metis.n_patches 0
python -m train.peptides_func model.name MPGNN metis.n_patches 0
...
Use run.sh
to run the codes and reproduce the published results.