ResNet-TF2
ResNeXt-TF2
WideResNet(WRN)-TF2
ResNet-with-LRWarmUp-TF2
Indicator | Value |
---|---|
Accuracy | 0.98620 |
Precision | 0.98618 |
Recall | 0.98606 |
F1-Score | 0.98610 |
Confusion Matrix
[[ 974 0 1 0 0 0 1 2 2 0]
[ 0 1131 1 1 0 2 0 0 0 0]
[ 2 4 1018 0 1 0 0 4 2 1]
[ 1 0 1 997 0 3 0 2 4 2]
[ 0 0 0 0 973 0 2 1 1 5]
[ 2 0 0 6 0 880 1 1 0 2]
[ 5 2 0 0 2 3 945 0 1 0]
[ 1 2 5 5 0 0 0 1009 1 5]
[ 9 1 1 2 2 2 3 6 945 3]
[ 2 3 0 2 6 3 0 1 2 990]]
Class-0 | Precision: 0.97791, Recall: 0.99388, F1-Score: 0.98583
Class-1 | Precision: 0.98950, Recall: 0.99648, F1-Score: 0.99298
Class-2 | Precision: 0.99124, Recall: 0.98643, F1-Score: 0.98883
Class-3 | Precision: 0.98421, Recall: 0.98713, F1-Score: 0.98566
Class-4 | Precision: 0.98882, Recall: 0.99084, F1-Score: 0.98983
Class-5 | Precision: 0.98544, Recall: 0.98655, F1-Score: 0.98599
Class-6 | Precision: 0.99265, Recall: 0.98643, F1-Score: 0.98953
Class-7 | Precision: 0.98343, Recall: 0.98152, F1-Score: 0.98247
Class-8 | Precision: 0.98643, Recall: 0.97023, F1-Score: 0.97826
Class-9 | Precision: 0.98214, Recall: 0.98117, F1-Score: 0.98166
Total | Accuracy: 0.98620, Precision: 0.98618, Recall: 0.98606, F1-Score: 0.98610
- Python 3.7.6
- Tensorflow 2.1.0
- Numpy 1.18.1
- Matplotlib 3.1.3
[1] Ilya Loshchilov et al. (2016). SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv preprint arXiv:1608.03983.