ResNet-TF2
ResNeXt-TF2
ResNet-with-LRWarmUp-TF2
ResNet-with-SGDR-TF2
Indicator | Value |
---|---|
Accuracy | 0.99350 |
Precision | 0.99353 |
Recall | 0.99343 |
F1-Score | 0.99347 |
Confusion Matrix
[[ 979 0 0 0 0 0 1 0 0 0]
[ 0 1130 0 1 1 0 1 2 0 0]
[ 0 1 1028 1 0 0 0 1 0 1]
[ 0 0 1 1008 0 1 0 0 0 0]
[ 0 0 1 0 978 0 1 0 0 2]
[ 1 0 0 5 0 884 1 0 0 1]
[ 1 2 0 0 1 1 953 0 0 0]
[ 0 1 5 0 0 0 0 1021 1 0]
[ 5 0 4 3 1 0 1 1 957 2]
[ 0 0 2 0 4 3 0 3 0 997]]
Class-0 | Precision: 0.99290, Recall: 0.99898, F1-Score: 0.99593
Class-1 | Precision: 0.99647, Recall: 0.99559, F1-Score: 0.99603
Class-2 | Precision: 0.98751, Recall: 0.99612, F1-Score: 0.99180
Class-3 | Precision: 0.99018, Recall: 0.99802, F1-Score: 0.99408
Class-4 | Precision: 0.99289, Recall: 0.99593, F1-Score: 0.99441
Class-5 | Precision: 0.99438, Recall: 0.99103, F1-Score: 0.99270
Class-6 | Precision: 0.99478, Recall: 0.99478, F1-Score: 0.99478
Class-7 | Precision: 0.99319, Recall: 0.99319, F1-Score: 0.99319
Class-8 | Precision: 0.99896, Recall: 0.98255, F1-Score: 0.99068
Class-9 | Precision: 0.99402, Recall: 0.98811, F1-Score: 0.99105
Total | Accuracy: 0.99350, Precision: 0.99353, Recall: 0.99343, F1-Score: 0.99347
- Python 3.7.6
- Tensorflow 2.1.0
- Numpy 1.18.1
- Matplotlib 3.1.3
[1] Sergey Zagoruyko et al. (2016). Wide Residual Networks. arXiv preprint arXiv:1605.07146.