Simulation for collective perception with CALAR & SUMO

Run the simulation

Generate routes and rerouting strategy

  • run python script trafficgen.py under directory trafic_flow to regenerate routes if you made some modifications on road generation. Otherwise routes are already generated in folder town5.

Activate Carla simulation server

Cofigurate simulation parameters and start simulation

  • config parameters are in config.json file under dir Sumo, path for saving data is also defined there.
    • "root_path": where to save the generated data
    • "sensor_names": which sensors you want to use for collecting data
  • run the simulation under the project root dir
python main.py traffic_flow/town5/Town05.sumocfg --tls-manager carla --sumo-gui

Simulation raw data

Data structure

  • rootdir
    • vehicle_id...
      • camera
        • image...
        • image_meta...
      • camera_sem
        • images_sem_label...
        • image_sem_meta...
      • lidar
        • pointcloud...
        • pointcloud_meta...
      • lidar_sem
        • pointclouds_sem_label...
        • pointclouds_sem_meta...
    • info.csv

Definition of file names and file contents

  • ... means there are multiple such file or folders
  • rootdir: j xxx e xxx states for junction, the junction number, ego and ego vehicle id respectively
  • vehicle_id: vehicle_id
  • image, image_sem_label: RGB image data in png format, file name = ".png", check carla documentation for color definition
  • image_meta, image_sem_meta: meta information about the image with the same frame name, file name = "_meta.txt"
    • line1: frame, timestamp, fov, height, width
    • line2: roll, pitch, yaw, x, y, z
  • pointcloud, pointclouds_sem_label: pointcloud raw data, file name = ".pcd", check carla documentation for color definition
  • pointcloud_meta, pointclouds_sem_meta: meta information about the pointcloud with the same frame name, file name = "_meta.txt"
    • line1: frame, timestamp, horizontal_angle, n_channels
    • line2: roll, pitch, yaw, x, y, z
    • line3: 64 elements array, each element indicate the points number measured by the corresponding laser.

Data formating

  • run the python script formatting_data.py in folder scripts/python , before runing the script, you need to change the path(in_path) to the generated raw simulation data as well as the path(out_path) where you want to store the formatted data.

Data structure

  • the formatted data has 3 folders

    • cloud_ego: clouds collected by ego vehicle, no down-sampling
    • cloud_coop: point clouds of cooperative vehicles
    • cloud_fused: fused clouds(including ego-vehicle cloud), down-sampled through voxel grid(size=0.2m)
    • label_box: ground truth bounding boxes of all vehicles in the scene of each frame
  • point cloud files:

    • all data are written in binary files. Data are all in float32 length,
    • each data point has 4 columns(x,y,z,label), following is the semantic meaning of labels
        LABEL_COLORS = np.array([
        (0, 0, 0),       #0 Unlabeled
        (70, 70, 70),    #1 Buildings
        (100, 40, 40),   #2 Fences
        (55, 90, 80),    #3 Other
        (220, 20, 60),   #4 Pedestrians
        (153, 153, 153), #5 Poles
        (157, 234, 50),  #6 RoadLines
        (128, 64, 128),  #7 Roads
        (244, 35, 232),  #8 Sidewalks
        (107, 142, 35),  #9 Vegetation
        (0, 0, 142),     #10 Vehicles
        (102, 102, 156), #11 Walls
        (220, 220, 0),   #12 TrafficSign
        (70, 130, 180),  #13 Sky
        (81, 0, 81),     #14 Ground
        (150, 100, 100), #15 Bridge
        (230, 150, 140), #16 Railtrack
        (180, 165, 180), #17 GuardRail
        (250, 170, 30),  #18 TrafficLight
        (110, 190, 160), #19 Static
        (170, 120, 50),  #20 Dynamic
        (45, 60, 150),   #21 Water
        (145, 170, 100)  #22 Terrain
        ])
  • filename: <junction_id>_<frame_id>.<extention>

  • label_box format:

    • each row indicates one bounding box,
    • column from left to right are: vehicle_id, vehicle_class, x, y, z, rx, ry, rz, l, w, h
    • x,y,z: the center point of the bounding box
    • rx, ry, rz: orientation
    • l, w, h: vehicle size