LLaMA2-Accessory is an open-source toolkit for pre-training, fine-tuning and deployment of Large Language Models (LLMs) and mutlimodal LLMs. This repo is mainly inherited from LLaMA-Adapter with more advanced features.
- [2023.07.23] Initial release 📌
-
Support More Datasets and Tasks
- Pre-training with RefinedWeb and StarCoder.
- Single-modal fine-tuning with Alpaca, ShareGPT, LIMA, UltraChat and MOSS.
- Multi-modal fine-tuning with image-text pairs (LAION, COYO and more), interleaved image-text data (MMC4 and OBELISC) and visual instruction data (LLaVA, Shrika, Bard)
- LLM for API Control (GPT4Tools and Gorilla).
-
Efficient Optimization and Deployment
- Parameter-efficient fine-tuning with Zero-init Attenion and Bias-norm Tuning.
- Fully Sharded Data Parallel (FSDP), Flash Attention 2 and QLoRA.
-
Support More Visual Encoders and LLMs
See docs/install.md.
See docs/finetune.md.
- instruction-tuned LLaMA2: alpaca.
- Chatbot LLaMA2: dialog_sharegpt & dialog_lima & llama2-chat.
Chris Liu, Ziyi Lin, Guian Fang, Jiaming Han, Renrui Zhang, Wenqi Shao, Peng Gao
Show More
- @facebookresearch for ImageBind & LIMA
- @Instruction-Tuning-with-GPT-4 for GPT-4-LLM
- @tatsu-lab for stanford_alpaca
- @tloen for alpaca-lora
- @lm-sys for FastChat
- @domeccleston for sharegpt
- @karpathy for nanoGPT
- @Dao-AILab for flash-attention
- @NVIDIA for apex & Megatron-LM
- @Vision-CAIR for MiniGPT-4
- @haotian-liu for LLaVA
- @huggingface for peft & OBELISC
- @Lightning-AI for lit-gpt & lit-llama
- @allenai for mmc4
- @StevenGrove for GPT4Tools
- @ShishirPatil for gorilla
- @OpenLMLab for MOSS
- @thunlp for UltraChat
- @LAION-AI for LAION-5B
- @shikras for shikra
- @kakaobrain for coyo-dataset
- @salesforce for LAVIS
- @openai for CLIP
- @bigcode-project for starcoder
- @tiiuae for falcon-refinedweb
- @microsoft for DeepSpeed
- @declare-lab for flacuna
- @Google for Bard