[Project page] [Paper] [Hardware Guide] [Data Collection Instruction] [SLAM repo] [SLAM docker]
Cheng Chi1,2, Zhenjia Xu1,2, Chuer Pan1, Eric Cousineau3, Benjamin Burchfiel3, Siyuan Feng3,
Russ Tedrake3, Shuran Song1,2
1Stanford University, 2Columbia University, 3Toyota Research Institute
Only tested on Ubuntu 22.04
Install docker following the official documentation and finish linux-postinstall.
Install system-level dependencies:
$ sudo apt install -y libosmesa6-dev libgl1-mesa-glx libglfw3 patchelf
We recommend Miniforge instead of the standard anaconda distribution for faster installation:
$ mamba env create -f conda_environment.yaml
Copy all videos for a data collection session into folder <session>
.
Run SLAM pipeline
$ python run_slam_pipeline.py <session>
Generate dataset for training.
$ python scripts_slam_pipeline/07_generate_replay_buffer.py -o dataset.zarr.zip <session>
$ python train.py --config-name=train_diffusion_unet_timm_umi_workspace task.dataset_path=dataset.zarr.zip