/GSoC-2021-Final-Report

This repo contains my final report submitted for the GSoC 2021 program @sympy.

GSoC 2021 Report: Improve and Expand Functionalities in Control Module (Akshansh Bhatt)

ㅤㅤㅤ

About Me

I am Akshansh Bhatt, a 2nd-year undergraduate student pursuing a dual major in Physics and Electronics Engineering at BITS Pilani. I was part of the Google Summer of Code 2021 program as a student developer at SymPy. You can find my project here. For information related to my weekly progress in the program, you can check out my blog posts. I am available for discussions/feedback on this email address.

Project Synopsis

My project aimed to achieve 3 main goals -

  • Complete the unfinished PR(s) and fix bugs from last year's work by @namannimmo10.
  • Make the control module's API more robust and beginner-friendly by adding examples related to use cases.
  • Add functionalities in the control module that were proposed last year, but work didn't start. This mainly included StateSpace class and common plots related to control theory.

Work Accomplished

Major PRs

  • #21634 : Improve TransferFunction docs and add to_expr
  • #21653 : [GSoC] Add TransferFunctionMatrix class
  • #19761 : [GSoC] Add TransferFunctionMatrix class in physics.control
  • #21703 : Implement MIMOSeries and MIMOParallel
  • #21763 : Add graphical analyses in physics.control
  • #21833 : Implement MIMOFeedback class

Minor PRs

  • #21587 : fix(physics.control): order of classes in doc
  • #21820 : Update example in MIMOParallel.var

Work in Progress

  • Adding Textbook examples demonstrating the use cases of the modules functionalities.

Examples

In chronological order of addition to the codebase, these are some examples demonstrating my work -

  • TransferFunction instances from sympy Expr (expression class) using from_rational_expression() classmethod.
>>> from sympy.abc import s, p, a
>>> from sympy.physics.control.lti import TransferFunction
>>> expr1 = s/(s**2 + 2*s + 1)
>>> tf1 = TransferFunction.from_rational_expression(expr1)
>>> tf1
TransferFunction(s, s**2 + 2*s + 1, s)
>>> expr2 = (a*p**3 - a*p**2 + s*p)/(p + a**2)  # Expr with more than one variables
>>> tf2 = TransferFunction.from_rational_expression(expr2, p)
>>> tf2
TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p)
  • Get the equivalent rational expression by using the to_expr() method. This is helpful specially when the expression is to be manipulated rather than the TransferFunction object. It also works for Series and Parallel objects.
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy import Expr
>>> tf1 = TransferFunction(s, a*s**2 + 1, s)
>>> tf1.to_expr()
s/(a*s**2 + 1)
>>> isinstance(_, Expr)
True
>>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p)
>>> tf2.to_expr()
1/((b - p)*(3*b + p))
>>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s)
>>> tf3.to_expr()  # Makes sure that poles and zeros are not cancelled atomatically
((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1)))
>>> _.simplify()  # Manipulate this expr however you like
1/(s - 1)
  • TransferFunctionMatrix class for representing MIMO tf systems.
>>> from sympy.abc import s
>>> from sympy import pprint
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
>>> TF = TransferFunction; TFM = TransferFunctionMatrix
>>> tf_1 = TF(5, s, s)
>>> tf_2 = TF(5*s, (2 + s**2), s)
>>> tf_3 = TF(5, (s*(2 + s**2)), s)
>>> tf_4 = TF(10, s, s)
>>> H_1 = TFM([[tf_1, tf_2], [tf_3, tf_4]])
>>> H_1
TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(10, s, s))))
>>> pprint(H_1, use_unicode=False)  # pprint() for better visualization on terminal
[    5        5*s  ]   
[    -       ------]   
[    s        2    ]   
[            s  + 2]   
[                  ]   
[    5         10  ]   
[----------    --  ]   
[  / 2    \    s   ]   
[s*\s  + 2/        ]{t}
>>> # Default printer is latex for IPython notebooks
>>> H_1.var
s
>>> print(f"Inputs = {H_1.num_inputs} | Outputs = {H_1.num_outputs}")
Inputs = 2 | Outputs = 2
>>> H_1.shape
(2, 2)

There are many other useful methods and attributes of TransferFunctionMatrix class like - transpose(), doit(), index notation (a[b, c]) (for accesing individual elements of TFM), subs(), rewrite(), expand(), simplify(), elem_poles(), elem_zeros() etc. Even evalf() works with TransferFunctionMatrix. Adding examples related to each of these would make this report unnecessarily big so users can try independently. The docs have examples related to each of these methods.

  • Just like TransferFunction's from_rational_expression(), users can convert TransferFunctionMatrix objects to ImmutableMatrix objects using from_Matrix() (classmethod).
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunctionMatrix
>>> from sympy import Matrix, pprint
>>> M = Matrix([[s, 1/s], [1/(s+1), s]])
>>> M_tf = TransferFunctionMatrix.from_Matrix(M, s)  # args -> (Matrix, var)
>>> pprint(M_tf, use_unicode=False)
[  s    1]
[  -    -]
[  1    s]
[        ]
[  1    s]
[-----  -]
[s + 1  1]{t}
  • Adding and Multiplying TransferFunctionMatrix objects return MIMOSeries and MIMOParallel objects respectively. These systems can be resolved further using doit().
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunctionMatrix, TransferFunction
>>> from sympy import pprint
>>> g_11 = TransferFunction(5, s, s)
>>> g_21 = TransferFunction(5, s*(s**2 + 2), s)
>>> G_1 = TransferFunctionMatrix([[g_11], [g_21]])  # TFM
>>> g_12 = TransferFunction(5, s, s)
>>> G_2 = TransferFunctionMatrix([[g_11, g_12]])  # TFM
>>> G = G_1*G_2
>>> G
MIMOSeries(TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5, s, s)),)), TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),))))
>>> pprint(G, use_unicode=False)  # pretty-printed form
[    5     ]             
[    -     ]             
[    s     ]             
[          ]    [5  5]   
[    5     ]   *[-  -]   
[----------]    [s  s]{t}
[  / 2    \]             
[s*\s  + 2/]{t}          
>>> G.doit()  # the equivalent MIMOSeries system
TransferFunctionMatrix(((TransferFunction(25, s**2, s), TransferFunction(25, s**2, s)), (TransferFunction(25, s**2*(s**2 + 2), s), TransferFunction(25, s**2*(s**2 + 2), s))))
>>> pprint(G.doit(), use_unicode=False)  # pretty-printed
[    25           25     ]   
[    --           --     ]   
[     2            2     ]   
[    s            s      ]   
[                        ]   
[     25           25    ]   
[-----------  -----------]   
[ 2 / 2    \   2 / 2    \]   
[s *\s  + 2/  s *\s  + 2/]{t}
>>> h_11 = TransferFunction(5, s, s)
>>> h_12 = TransferFunction(5*s, s**2 + 2, s)
>>> h_21 = TransferFunction(5, s*(s**2 + 2), s)
>>> h_22 = TransferFunction(10, s, s)
>>> H = TransferFunctionMatrix([[h_11, h_12], [h_21, h_22]])  # TFM
>>> eq = G + H
>>> eq  # Addition gives `MIMOParallel` object
MIMOParallel(MIMOSeries(TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5, s, s)),)), TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),)))), TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(10, s, s)))))
>>> pprint(eq, use_unicode=False)  # pretty-printed
                            [    5        5*s  ]   
[    5     ]                [    -       ------]   
[    -     ]                [    s        2    ]   
[    s     ]                [            s  + 2]   
[          ]    [5  5]      [                  ]   
[    5     ]   *[-  -]    + [    5         10  ]   
[----------]    [s  s]{t}   [----------    --  ]   
[  / 2    \]                [  / 2    \    s   ]   
[s*\s  + 2/]{t}             [s*\s  + 2/        ]{t}
>>> eq.doit()  # The equivalent TFM system computed
TransferFunctionMatrix(((TransferFunction(5*(s**2 + 5*s), s**3, s), TransferFunction(5*s**3 + 25*s**2 + 50, s**2*(s**2 + 2), s)), (TransferFunction(5*(s**2*(s**2 + 2) + 5*s*(s**2 + 2)), s**3*(s**2 + 2)**2, s), TransferFunction(5*(2*s**2*(s**2 + 2) + 5*s), s**3*(s**2 + 2), s))))
>>> pprint(_, use_unicode=False)  # pretty-printed
[           / 2      \                 3       2        ]   
[         5*\s  + 5*s/              5*s  + 25*s  + 50   ]   
[         ------------              -----------------   ]   
[               3                       2 / 2    \      ]   
[              s                       s *\s  + 2/      ]   
[                                                       ]   
[  / 2 / 2    \       / 2    \\    /   2 / 2    \      \]   
[5*\s *\s  + 2/ + 5*s*\s  + 2//  5*\2*s *\s  + 2/ + 5*s/]   
[------------------------------  -----------------------]   
[                    2                  3 / 2    \      ]   
[          3 / 2    \                  s *\s  + 2/      ]   
[         s *\s  + 2/                                   ]{t}
  • Users can also compute closed-loop Feedback for SISO and MIMO systems (both positive and negative).
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, Feedback, TransferFunctionMatrix, MIMOFeedback
>>> # SISO Feedback Systems
>>> # ---------------------
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)  # By default negative sign is considered
>>> F1
Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1)
>>> pprint(F1, use_unicode=False)  # This is how pretty-printed Feedback object looks like
        /   2          \       
        |3*s  + 7*s - 3|       
        |--------------|       
        |  2           |       
        \ s  - 4*s + 2 /       
-------------------------------
    /   2          \           
1   |3*s  + 7*s - 3| /5*s - 10\
- + |--------------|*|--------|
1   |  2           | \ s + 7  /
    \ s  - 4*s + 2 /           
>>> F2 = Feedback(plant, controller, sign=1)  # Positive Feedback
>>> F2
Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), 1)
>>> pprint(F2, use_unicode=False)
        /   2          \       
        |3*s  + 7*s - 3|       
        |--------------|       
        |  2           |       
        \ s  - 4*s + 2 /       
-------------------------------
    /   2          \           
1   |3*s  + 7*s - 3| /5*s - 10\
- - |--------------|*|--------|
1   |  2           | \ s + 7  /
    \ s  - 4*s + 2 /           
>>> F1.doit()  # doit() gives the resultant TransferFunction
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s)
>>> F1.doit(cancel=True, expand=True)  # cancel, expand are optional arguments
TransferFunction(3*s**3 + 28*s**2 + 46*s - 21, 16*s**3 + 8*s**2 - 111*s + 44, s)
>>> # MIMO Feedback Systems
>>> # ---------------------
>>> tf1 = TransferFunction(s, 1 - s, s)
>>> tf2 = TransferFunction(1, s, s)
>>> tf3 = TransferFunction(5, 1, s)
>>> tf4 = TransferFunction(s - 1, s, s)
>>> tf5 = TransferFunction(0, 1, s)
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
>>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]])
>>> F_1 = MIMOFeedback(sys1, sys2, 1)  # Positive Feedback
>>> pprint(F_1, use_unicode=False)
/    [  s      1  ]    [5  0]   \-1   [  s      1  ]
|    [-----    -  ]    [-  -]   |     [-----    -  ]
|    [1 - s    s  ]    [1  1]   |     [1 - s    s  ]
|I - [            ]   *[    ]   |   * [            ]
|    [  5    s - 1]    [0  0]   |     [  5    s - 1]
|    [  -    -----]    [-  -]   |     [  -    -----]
\    [  1      s  ]{t} [1  1]{t}/     [  1      s  ]{t}
>>> pprint(F_1.doit(), use_unicode=False)  # Returns the eqivalent MIMO-TF system
[               -s                         1 - s       ]
[             -------                   -----------    ]
[             6*s - 1                   s*(1 - 6*s)    ]
[                                                      ]
[25*s*(s - 1) + 5*(1 - s)*(6*s - 1)  (s - 1)*(6*s + 24)]
[----------------------------------  ------------------]
[        (1 - s)*(6*s - 1)              s*(6*s - 1)    ]{t}
  • Some basic plots related to control theory. These functions work for any SISO system.
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import *
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
>>> pole_zero_plot(tf1)  # PZ plot

image

>>> tf2 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
>>> step_response_plot(tf2)  # Step-Response Plot of a system

image

>>> tf3 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
>>> impulse_response_plot(tf3)  # Impulse-Response Plot of a system

image

>>> tf4 = TransferFunction(s, (s+4)*(s+8), s)  # Ramp Response Plot of a system
>>> ramp_response_plot(tf4, upper_limit=2)

image

>>> tf5 = TransferFunction(1*s**2 + 0.1*s + 7.5, 1*s**4 + 0.12*s**3 + 9*s**2, s)
>>> bode_plot(tf5, initial_exp=0.2, final_exp=0.7)  # Bode Plot of the system

image

All these plots are highly customizable and also offer numeric options to the users for analysis or other plotting modules/backends.

Future Work

The control module still requires a lot of changes to become a powerful control system toolkit like MATLAB. Some of which include -

  • Implementing Discrete-time TransferFunction model. Discussing the API and making things compatible with the current implementation without deprecating anything will be a challenging task.
  • Introducing StateSpace model for effectively representing a State Space system symbolically. I have done some work on it, but it is not satisfactory enough to submit a patch.
  • Implementing root_locus_plot(sys) and nyquist_plot(sys). I did complete the root_locus_plot(sys) during GSoC, but it couldn't get merged due to some performance issue. Those who are interested can refer to the first comment on the plots PR (#21763) for more details. Also, the control_plots module at present only supports SISO systems (TransferFunction and its configurations) so, extending the support for MIMO systems can also be a potential future scope. After adding StateSpace class, state space models should also be supported by this module.
  • Adding support for TransferFunctionMatrix objects to be instantiated by passing a list of numerators and a common denominator. This can be an alternative way of object creation.
  • Illustrating how a student can solve his textbook problems using this module by adding a few examples.

Conclusion

I had an exceptional experience working for SymPy this summer! I want to thank SymPy for giving me a chance to work on such a big project and my mentors - Naman Gera and Jason Moore, for guiding me in every way possible. Apart from my mentors, I would like to acknowledge other people involved in reviewing my code - Oscar Benjamin, Ilhan Polat, Eric Wieser, Priit Laes, and S.Y. Lee. This project wouldn't have been achievable without the selfless participation of these people.

I have improved my coding skills by getting exposed to Documentation and Test Driven Development. I got a gist of what it means to write actual 'Pythonic' code, structure any Python project, and find solutions to real-world problems that developers face. Apart from this, I have also developed my communication skills through async communication and weekly video calls with my mentors.

I plan to contribute more to SymPy in the future and help new contributors to make their first step towards open source. I'll be glad to be a mentor in the next edition of GSoC.