By Bowen Zhang, Yiji Cheng, Jiaolong Yang, Chunyu Wang, Feng Zhao, Yansong Tang, Dong Chen, Baining Guo.
Paper | Project Page | Code
teaser_video.mp4
We introduce a radiance representation that is both structured and fully explicit and thus greatly facilitates 3D generative modeling. Existing radiance representations either require an implicit feature decoder, which significantly degrades the modeling power of the representation, or are spatially unstructured, making them difficult to integrate with mainstream 3D diffusion methods. We derive GaussianCube by first using a novel densification-constrained Gaussian fitting algorithm, which yields high-accuracy fitting using a fixed number of free Gaussians, and then rearranging these Gaussians into a predefined voxel grid via Optimal Transport. Since GaussianCube is a structured grid representation, it allows us to use standard 3D U-Net as our backbone in diffusion modeling without elaborate designs. More importantly, the high-accuracy fitting of the Gaussians allows us to achieve a high-quality representation with orders of magnitude fewer parameters than previous structured representations for comparable quality, ranging from one to two orders of magnitude. The compactness of GaussianCube greatly eases the difficulty of 3D generative modeling. Extensive experiments conducted on unconditional and class-conditioned object generation, digital avatar creation, and text-to-3D synthesis all show that our model achieves state-of-the-art generation results both qualitatively and quantitatively, underscoring the potential of GaussianCube as a highly accurate and versatile radiance representation for 3D generative modeling.
We recommend Linux for performance and compatibility reasons. We use conda to manage the environment. Please install conda from here if you haven't done so.
git clone https://github.com/GaussianCube/GaussianCube.git
cd GaussianCube
conda env create -f environment.yml
conda activate gaussiancube
Please download model checkpoints and dataset statistics (pre-computed mean and sta files) from the following links:
Model | Task | Download |
---|---|---|
OmniObject3D | Class-conditioned Generation | 🤗 Hugging Face |
ShapeNet Car | Unconditional Generation | 🤗 Hugging Face |
ShapeNet Chair | Unconditional Generation | 🤗 Hugging Face |
To inference pretrained model of OmniObject3D, save the downloaded model checkpoint and dataset statistics to ./OmniObject3D/
, then run:
python inference.py --exp_name /tmp/OmniObject3D_test --config configs/omni_class_cond.yml --rescale_timesteps 300 --ckpt ./OmniObject3D/OmniObject3D_ckpt.pt --mean_file ./OmniObject3D/mean.pt --std_file ./OmniObject3D/std.pt --bound 1.0 --num_samples 10 --render_video --class_cond
To inference pretrained model of ShapeNet Car, save the downloaded model checkpoint and dataset statistics to ./shapenet_car/
, then run:
python render_inference.py --exp_name /tmp/shapenet_car_test --config configs/shapenet_uncond.yml --rescale_timesteps 300 --ckpt ./shapenet_car/shapenet_car_ckpt.pt --mean_file ./shapenet_car/mean.pt --std_file ./shapenet_car/std.pt --bound 0.45 --num_samples 10 --render_video
To inference pretrained model of ShapeNet Chair, save the downloaded model checkpoint and dataset statistics to ./shapenet_chair/
, then run:
python inference.py --exp_name /tmp/shapenet_chair_test --config configs/shapenet_uncond.yml --rescale_timesteps 300 --ckpt ./shapenet_chair/shapenet_chair_ckpt.pt --mean_file ./shapenet_chair/mean.pt --std_file ./shapenet_chair/std.pt --bound 0.35 --num_samples 10 --render_video
Please refer to data_construction to prepare the training data. Then, put the data in the following structure (take ShapeNet as an example):
example_data
├── shapenet
│ ├── mean_volume_act.pt
│ ├── std_volume_act.pt
│ ├── shapenet_train.txt
│ ├── volume_act
│ └── shapenet_rendering_512
Run the following command to train the model:
python main.py --log_interval 100 --batch_size 8 --lr 5e-5 --exp_name ./output/shapenet_diffusion_training --save_interval 5000 --config configs/shapenet_uncond.yml --use_tensorboard --use_vgg --load_camera 1 --render_l1_weight 10 --render_lpips_weight 10 --use_fp16 --mean_file ./example_data/shapenet/mean_volume_act.pt --std_file ./example_data/shapenet/std_volume_act.pt --data_dir ./example_data/shapenet/volume_act --cam_root_path ./example_data/shapenet/shapenet_rendering_512/ --txt_file ./example_data/shapenet/shapenet_train.txt --bound 0.45 --start_idx 0 --end_idx 100 --clip_input
Run the following command to train the model:
python main.py --log_interval 100 --batch_size 8 --lr 5e-5 --exp_name ./output/omniobject3d_diffusion_training --save_interval 5000 --config configs/omni_class_cond.yml --use_tensorboard --use_vgg --load_camera 1 --render_l1_weight 10 --render_lpips_weight 10 --use_fp16 --mean_file ./example_data/omniobject3d/mean_volume_act.pt --std_file ./example_data/omniobject3d/std_volume_act.pt --data_dir ./example_data/omniobject3d/volume_act --cam_root_path ./example_data/omniobject3d/Omniobject3d_rendering_512/ --txt_file ./example_data/omniobject3d/omni_train.txt --uncond_p 0.2 --bound 1.0 --start_idx 0 --end_idx 100 --clip_input --omni
Extract the CLIP features of text captions and put them under ./example_data/objaverse/
using the following script:
python scripts/encode_text_features.py
Then run the following command to train the model:
python main.py --log_interval 100 --batch_size 8 --lr 5e-5 --weight_decay 0 --exp_name ./output/objaverse_diffusion_training --save_interval 5000 --config configs/objaverse_text_cond.yml --use_tensorboard --use_vgg --load_camera 1 --render_l1_weight 10 --render_lpips_weight 10 --use_fp16 --data_dir ./example_data/objaverse/volume_act/ --start_idx 0 --end_idx 100 --txt_file ./example_data/objaverse/objaverse_train.txt --mean_file ./example_data/objaverse/mean_volume_act.pt --std_file ./example_data/objaverse/std_volume_act.pt --cam_root_path ./example_data/objaverse/objaverse_rendering_512/ --bound 0.5 --uncond_p 0.2 --objaverse --clip_input --text_feature_root ./example_data/objaverse/objaverse_text_feature/
This codebase is built upon the improved-diffusion, thanks to the authors for their great work. Also thanks the authors of Cap3D and VolumeDiffusion for the text captions of Objaverse dataset.
If you find this work useful, please consider citing:
@article{zhang2024gaussiancube,
title={GaussianCube: Structuring Gaussian Splatting using Optimal Transport for 3D Generative Modeling},
author={Zhang, Bowen and Cheng, Yiji and Yang, Jiaolong and Wang, Chunyu and Zhao, Feng and Tang, Yansong and Chen, Dong and Guo, Baining},
journal={arXiv preprint arXiv:2403.19655},
year={2024}
}
- Release the inference code.
- Release all pretrained models.
- Release the data construction code.
- Release the diffusion training code.