PyTorch to Keras model converter.
pip install pytorch2keras
To use the converter properly, please, make changes in your ~/.keras/keras.json
:
...
"backend": "tensorflow",
"image_data_format": "channels_first",
...
There is the problem related to a new version:
To make it work, please, cast all your .view()
parameters to int
. For example:
class ResNet(torchvision.models.resnet.ResNet):
def __init__(self, *args, **kwargs):
super(ResNet, self).__init__(*args, **kwargs)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(int(x.size(0)), -1) # << Here
x = self.fc(x)
return x
For the proper conversion to a tensorflow.js format, please use the new flag names='short'
.
Here is a short instruction how to get a tensorflow.js model:
- First of all, you have to convert your model to Keras with this converter:
k_model = pytorch_to_keras(model, input_var, [(10, 32, 32,)], verbose=True, names='short')
- Now you have Keras model. You can save it as h5 file and then convert it with
tensorflowjs_converter
but it doesn't work sometimes. As alternative, you may get Tensorflow Graph and save it as a frozen model:
# Function below copied from here:
# https://stackoverflow.com/questions/45466020/how-to-export-keras-h5-to-tensorflow-pb
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
"""
Freezes the state of a session into a pruned computation graph.
Creates a new computation graph where variable nodes are replaced by
constants taking their current value in the session. The new graph will be
pruned so subgraphs that are not necessary to compute the requested
outputs are removed.
@param session The TensorFlow session to be frozen.
@param keep_var_names A list of variable names that should not be frozen,
or None to freeze all the variables in the graph.
@param output_names Names of the relevant graph outputs.
@param clear_devices Remove the device directives from the graph for better portability.
@return The frozen graph definition.
"""
from tensorflow.python.framework.graph_util import convert_variables_to_constants
graph = session.graph
with graph.as_default():
freeze_var_names = \
list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
output_names = output_names or []
output_names += [v.op.name for v in tf.global_variables()]
input_graph_def = graph.as_graph_def()
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = convert_variables_to_constants(session, input_graph_def,
output_names, freeze_var_names)
return frozen_graph
from keras import backend as K
import tensorflow as tf
frozen_graph = freeze_session(K.get_session(),
output_names=[out.op.name for out in k_model.outputs])
tf.train.write_graph(frozen_graph, ".", "my_model.pb", as_text=False)
print([i for i in k_model.outputs])
- You will see the output layer name, so, now it's time to convert
my_model.pb
to tfjs model:
tensorflowjs_converter \
--input_format=tf_frozen_model \
--output_node_names='TANHTObs/Tanh' \
my_model.pb \
model_tfjs
- Thats all!
const MODEL_URL = `model_tfjs/tensorflowjs_model.pb`;
const WEIGHTS_URL = `model_tfjs/weights_manifest.json`;
cont model = await tf.loadFrozenModel(MODEL_URL, WEIGHTS_URL);
It's the converter of PyTorch graph to a Keras (Tensorflow backend) model.
Firstly, we need to load (or create) a valid PyTorch model:
class TestConv2d(nn.Module):
"""
Module for Conv2d testing
"""
def __init__(self, inp=10, out=16, kernel_size=3):
super(TestConv2d, self).__init__()
self.conv2d = nn.Conv2d(inp, out, stride=1, kernel_size=kernel_size, bias=True)
def forward(self, x):
x = self.conv2d(x)
return x
model = TestConv2d()
# load weights here
# model.load_state_dict(torch.load(path_to_weights.pth))
The next step - create a dummy variable with correct shape:
input_np = np.random.uniform(0, 1, (1, 10, 32, 32))
input_var = Variable(torch.FloatTensor(input_np))
We use the dummy-variable to trace the model (with jit.trace):
from converter import pytorch_to_keras
# we should specify shape of the input tensor
k_model = pytorch_to_keras(model, input_var, [(10, 32, 32,)], verbose=True)
You can also set H and W dimensions to None to make your model shape-agnostic (e.g. fully convolutional netowrk):
from pytorch2keras.converter import pytorch_to_keras
# we should specify shape of the input tensor
k_model = pytorch_to_keras(model, input_var, [(10, None, None,)], verbose=True)
That's all! If all the modules have converted properly, the Keras model will be stored in the k_model
variable.
Here is the only method pytorch_to_keras
from pytorch2keras
module.
def pytorch_to_keras(
model, args, input_shapes,
change_ordering=False, training=False, verbose=False, names=False,
)
Options:
- model -- a PyTorch module to convert;
- args -- list of dummy variables with proper shapes;
- input_shapes -- list with shape tuples;
- change_ordering -- boolean, if enabled, the converter will try to change
BCHW
toBHWC
- training -- boolean, switch model to training mode (never use it)
- verbose -- boolean, verbose output
- names -- choice from [
keep
,short
,random
]. The selector set the target layer naming policy.
-
Activations:
- ReLU
- LeakyReLU
- SELU
- Sigmoid
- Softmax
- Tanh
- HardTanh
-
Constants
-
Convolutions:
- Conv1d
- Conv2d
- ConvTrsnpose2d
-
Element-wise:
- Add
- Mul
- Sub
- Div
-
Embedding
-
Linear
-
Normalizations:
- BatchNorm2d
- InstanceNorm2d
- Dropout
-
Poolings:
- MaxPool2d
- AvgPool2d
- Global MaxPool2d (adaptive pooling to shape [1, 1])
- Global AvgPool2d (adaptive pooling to shape [1, 1])
-
Not tested yet:
- Upsampling
- Padding
- Reshape
- ResNet*
- VGG*
- PreResNet*
- SqueezeNet (with ceil_mode=False)
- SqueezeNext
- DenseNet*
- AlexNet
- Inception
- SeNet
- Mobilenet v2
- DiracNet
- DARTS
- DRNC
Model | Top1 | Top5 | Params | FLOPs | Source weights | Remarks |
---|---|---|---|---|---|---|
ResNet-10 | 37.09 | 15.55 | 5,418,792 | 892.62M | osmr's repo | Success |
ResNet-12 | 35.86 | 14.46 | 5,492,776 | 1,124.23M | osmr's repo | Success |
ResNet-14 | 32.85 | 12.41 | 5,788,200 | 1,355.64M | osmr's repo | Success |
ResNet-16 | 30.68 | 11.10 | 6,968,872 | 1,586.95M | osmr's repo | Success |
ResNet-18 x0.25 | 49.16 | 24.45 | 831,096 | 136.64M | osmr's repo | Success |
ResNet-18 x0.5 | 36.54 | 14.96 | 3,055,880 | 485.22M | osmr's repo | Success |
ResNet-18 x0.75 | 33.25 | 12.54 | 6,675,352 | 1,045.75M | osmr's repo | Success |
ResNet-18 | 29.13 | 9.94 | 11,689,512 | 1,818.21M | osmr's repo | Success |
ResNet-34 | 25.34 | 7.92 | 21,797,672 | 3,669.16M | osmr's repo | Success |
ResNet-50 | 23.50 | 6.87 | 25,557,032 | 3,868.96M | osmr's repo | Success |
ResNet-50b | 22.92 | 6.44 | 25,557,032 | 4,100.70M | osmr's repo | Success |
ResNet-101 | 21.66 | 5.99 | 44,549,160 | 7,586.30M | osmr's repo | Success |
ResNet-101b | 21.18 | 5.60 | 44,549,160 | 7,818.04M | osmr's repo | Success |
ResNet-152 | 21.01 | 5.61 | 60,192,808 | 11,304.85M | osmr's repo | Success |
ResNet-152b | 20.54 | 5.37 | 60,192,808 | 11,536.58M | osmr's repo | Success |
PreResNet-18 | 28.72 | 9.88 | 11,687,848 | 1,818.41M | osmr's repo | Success |
PreResNet-34 | 25.88 | 8.11 | 21,796,008 | 3,669.36M | osmr's repo | Success |
PreResNet-50 | 23.39 | 6.68 | 25,549,480 | 3,869.16M | osmr's repo | Success |
PreResNet-50b | 23.16 | 6.64 | 25,549,480 | 4,100.90M | osmr's repo | Success |
PreResNet-101 | 21.45 | 5.75 | 44,541,608 | 7,586.50M | osmr's repo | Success |
PreResNet-101b | 21.73 | 5.88 | 44,541,608 | 7,818.24M | osmr's repo | Success |
PreResNet-152 | 20.70 | 5.32 | 60,185,256 | 11,305.05M | osmr's repo | Success |
PreResNet-152b | 21.00 | 5.75 | 60,185,256 | 11,536.78M | Gluon Model Zoo | Success |
PreResNet-200b | 21.10 | 5.64 | 64,666,280 | 15,040.27M | tornadomeet/ResNet | Success |
DenseNet-121 | 25.11 | 7.80 | 7,978,856 | 2,852.39M | Gluon Model Zoo | Success |
DenseNet-161 | 22.40 | 6.18 | 28,681,000 | 7,761.25M | Gluon Model Zoo | Success |
DenseNet-169 | 23.89 | 6.89 | 14,149,480 | 3,381.48M | Gluon Model Zoo | Success |
DenseNet-201 | 22.71 | 6.36 | 20,013,928 | 4,318.75M | Gluon Model Zoo | Success |
DarkNet Tiny | 40.31 | 17.46 | 1,042,104 | 496.34M | osmr's repo | Success |
DarkNet Ref | 38.00 | 16.68 | 7,319,416 | 365.55M | osmr's repo | Success |
SqueezeNet v1.0 | 40.97 | 18.96 | 1,248,424 | 828.30M | osmr's repo | Success |
SqueezeNet v1.1 | 39.09 | 17.39 | 1,235,496 | 354.88M | osmr's repo | Success |
MobileNet x0.25 | 45.78 | 22.18 | 470,072 | 42.30M | osmr's repo | Success |
MobileNet x0.5 | 36.12 | 14.81 | 1,331,592 | 152.04M | osmr's repo | Success |
MobileNet x0.75 | 32.71 | 12.28 | 2,585,560 | 329.22M | Gluon Model Zoo | Success |
MobileNet x1.0 | 29.25 | 10.03 | 4,231,976 | 573.83M | Gluon Model Zoo | Success |
FD-MobileNet x0.25 | 56.19 | 31.38 | 383,160 | 12.44M | osmr's repo | Success |
FD-MobileNet x0.5 | 42.62 | 19.69 | 993,928 | 40.93M | osmr's repo | Success |
FD-MobileNet x1.0 | 35.95 | 14.72 | 2,901,288 | 146.08M | clavichord93/FD-MobileNet | Success |
MobileNetV2 x0.25 | 48.89 | 25.24 | 1,516,392 | 32.22M | Gluon Model Zoo | Success |
MobileNetV2 x0.5 | 35.51 | 14.64 | 1,964,736 | 95.62M | Gluon Model Zoo | Success |
MobileNetV2 x0.75 | 30.82 | 11.26 | 2,627,592 | 191.61M | Gluon Model Zoo | Success |
MobileNetV2 x1.0 | 28.51 | 9.90 | 3,504,960 | 320.19M | Gluon Model Zoo | Success |
InceptionV3 | 21.22 | 5.59 | 23,834,568 | 5,746.72M | Gluon Model Zoo | Success |
DiracNetV2-18 | 31.47 | 11.70 | 11,511,784 | 1,798.43M | szagoruyko/diracnets | Success |
DiracNetV2-34 | 28.75 | 9.93 | 21,616,232 | 3,649.37M | szagoruyko/diracnets | Success |
DARTS | 26.70 | 8.74 | 4,718,752 | 537.64M | szagoruyko/diracnets | Success |
Look at the tests
directory.
This software is covered by MIT License.