animikhaich/ECG-Atrial-Fibrillation-Classification-Using-CNN
This is a CNN based model which aims to automatically classify the ECG signals of a normal patient vs. a patient with AF and has been trained to achieve up to 93.33% validation accuracy.
Jupyter NotebookMIT
Stargazers
- Amri95
- Apollo1840TUM MRI
- arjun-subramaniyan
- Badboy1307
- calpit
- dhruvpatel09Kolhapur, Maharashtra, India.
- DonJon86
- Dyamei
- ebser7
- estamosNational Technical University of Athens
- EunhoRohHandong Global University
- excellentiam-prog
- HabibMradBeirut - Lebanon
- hanxinzhe
- ilongshanBeijing, China
- james4github
- JoevaenUESTC
- Joyli66
- leandermeUKE
- lijiahuan1009
- mahmutkamalak
- malaraimi
- mariafernandafloresventura
- mengsj08SYSU
- mocen1923
- nakamotooUC Berkeley
- pnpolcherMadrid, Spain
- RajeshBanalarb1@rajeshbanala1
- rdyan0053Monash University
- shaiman12
- shuike520
- suhole
- wlyl1999
- Wuuuuh
- Yuyuaj
- zhenqinchenzjut