/pise

Physics Informed Deep Learning for Traffic State Estimation: Illustrations with LWR and CTM Models

Primary LanguagePython

PISE

Physics Informed deep learning for traffic State Estimation (PISE)

Data in this repo -

  1. Synthetic.mat - case study I - simulated traffic state dataset
  2. NGSIM_US80_4pm_Velocity_Data.txt - case study II - NGSIM Velocity Data

Corresponding publications

Citations

@ARTICLE{huang2022physics,
  author={Huang, Archie J. and Agarwal, Shaurya},
  journal={IEEE Open Journal of Intelligent Transportation Systems}, 
  title={Physics-Informed Deep Learning for Traffic State Estimation: Illustrations with LWR and CTM Models}, 
  year={2022},
  volume={3},
  number={},
  pages={503-518},
  doi={10.1109/OJITS.2022.3182925}
}

@inproceedings{huang2020physics,
  title={Physics informed deep learning for traffic state estimation},
  author={Huang, Archie J. and Agarwal, Shaurya},
  booktitle={2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)},
  pages={1--6},
  year={2020},
  organization={IEEE}
}

Code is built upon Dr. Maziar Raissi's PINNs - https://github.com/maziarraissi/PINNs
Source of processed NGSIM data : Dr. Allan Avila - https://github.com/Allan-Avila/Highway-Traffic-Dynamics-KMD-Code

Reference