/ParallelReductionsBenchmark

Thrust, CUB, TBB, AVX2, AVX-512, CUDA, OpenCL, OpenMP, SyCL - all it takes to sum a lot of numbers fast!

Primary LanguageC++

Parallel Reductions Benchmark for CPUs & GPUs

Parallel Reductions Benchmark

One of the canonical examples when designing parallel algorithms is implementing parallel tree-like reductions or its special case of accumulating a bunch of numbers located in a continuous block of memory. In modern C++, most developers would call std::accumulate(array.begin(), array.end(), 0), and in Python, it's just a sum(array). Implementing those operations with high utilization in many-core systems is surprisingly non-trivial and depends heavily on the hardware architecture. This repository contains several educational examples showcasing the performance differences between different solutions:

  • AVX2 single-threaded, but SIMD-parallel code.
  • OpenMP reduction clause.
  • Thrust with its thrust::reduce.
  • CUDA kernels with warp-reductions.
  • OpenCL kernels, eight of them.
  • Parallel STL `'s in GCC with Intel oneTBB.

Previously, it also compared ArrayFire, Halide, and Vulkan queues for SPIR-V kernels and SyCL. Examples were collected from early 2010s until 2019 and later updated in 2022.

Build & Run

The following script will, by default, generate a 1GB array of numbers and reduce them using every available backend. All the classical Google Benchmark arguments are supported, including --benchmark_filter=opencl. All the library dependencies will be automatically fetched: GTest, GBench, Intel oneTBB, FMT, and Thrust with CUB. You are expected to build this on an x86 machine with CUDA drivers installed.

cmake -B build_release
cmake --build build_release --config Release
build_release/reduce_bench # To run all available benchmarks on default array size
build_release/reduce_bench --benchmark_filter="" # Control Google Benchmark params
PARALLEL_REDUCTIONS_LENGTH=1000 build_release/reduce_bench # Try different array size

Need a more fine-grained control to run only CUDA-based backends?

cmake -DCMAKE_CUDA_COMPILER=nvcc -DCMAKE_C_COMPILER=gcc-12 -DCMAKE_CXX_COMPILER=g++-12 -B build_release
cmake --build build_release --config Release
build_release/reduce_bench --benchmark_filter=cuda

To debug or introspect, the procedure is similar:

cmake -DCMAKE_CUDA_COMPILER=nvcc -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++ -DCMAKE_BUILD_TYPE=Debug -B build_debug
cmake --build build_debug --config Debug

And then run your favorite debugger.

Optional backends:

  • To enable Intel OpenCL on CPUs: apt-get install intel-opencl-icd.
  • To run on integrated Intel GPU, follow this guide.

Results

Different hardware would yield different results, but the general trends and observations are:

  • Accumulating over 100M float values generally requires double precision or Kahan-like numerical tricks to avoid instability.
  • Carefully unrolled for-loop is easier for the compiler to vectorize and faster than std::accumulate.
  • For float, double, and even Kahan-like schemes, hand-written AVX2 code is faster than auto-vectorization.
  • Parallel std::reduce for extensive collections is naturally faster than serial std::accumulate, but you may not feel the difference between std::execution::par and std::execution::par_unseq on CPU.
  • CUB is always faster than Thrust, and even for trivial types and large jobs, the difference can be 50%.

On Nvidia DGX-H100 nodes, with GCC 12 and NVCC 12.1, one may expect the following results:

$ build_release/reduce_bench
You did not feed the size of arrays, so we will use a 1GB array!
2024-05-06T00:11:14+00:00
Running build_release/reduce_bench
Run on (160 X 2100 MHz CPU s)
CPU Caches:
  L1 Data 32 KiB (x160)
  L1 Instruction 32 KiB (x160)
  L2 Unified 4096 KiB (x80)
  L3 Unified 16384 KiB (x2)
Load Average: 3.23, 19.01, 13.71
----------------------------------------------------------------------------------------------------------------
Benchmark                                                      Time             CPU   Iterations UserCounters...
----------------------------------------------------------------------------------------------------------------
unrolled<f32>/min_time:10.000/real_time                149618549 ns    149615366 ns           95 bytes/s=7.17653G/s error,%=50
unrolled<f64>/min_time:10.000/real_time                146594731 ns    146593719 ns           95 bytes/s=7.32456G/s error,%=0
std::accumulate<f32>/min_time:10.000/real_time         194089563 ns    194088811 ns           72 bytes/s=5.5322G/s error,%=93.75
std::accumulate<f64>/min_time:10.000/real_time         192657883 ns    192657360 ns           74 bytes/s=5.57331G/s error,%=0
std::reduce<par, f32>/min_time:10.000/real_time          3749938 ns      3727477 ns         2778 bytes/s=286.336G/s error,%=0
std::reduce<par, f64>/min_time:10.000/real_time          3921280 ns      3916897 ns         3722 bytes/s=273.824G/s error,%=100
std::reduce<par_unseq, f32>/min_time:10.000/real_time    3884794 ns      3864061 ns         3644 bytes/s=276.396G/s error,%=0
std::reduce<par_unseq, f64>/min_time:10.000/real_time    3889332 ns      3866968 ns         3585 bytes/s=276.074G/s error,%=100
openmp<f32>/min_time:10.000/real_time                    5061544 ns      5043250 ns         2407 bytes/s=212.137G/s error,%=65.5651u
avx2<f32>/min_time:10.000/real_time                    110796474 ns    110794861 ns          127 bytes/s=9.69112G/s error,%=50
avx2<f32kahan>/min_time:10.000/real_time               134144762 ns    134137771 ns          105 bytes/s=8.00435G/s error,%=0
avx2<f64>/min_time:10.000/real_time                    115791797 ns    115790878 ns          121 bytes/s=9.27304G/s error,%=0
avx2<f32aligned>@threads/min_time:10.000/real_time       5958283 ns      5041060 ns         2358 bytes/s=180.21G/s error,%=1.25033
avx2<f64>@threads/min_time:10.000/real_time              5996481 ns      5123440 ns         2337 bytes/s=179.062G/s error,%=1.25001
sse<f32aligned>@threads/min_time:10.000/real_time        5986350 ns      5193690 ns         2343 bytes/s=179.365G/s error,%=1.25021
cub@cuda/min_time:10.000/real_time                        356488 ns       356482 ns        39315 bytes/s=3.012T/s error,%=0
warps@cuda/min_time:10.000/real_time                      486387 ns       486377 ns        28788 bytes/s=2.20759T/s error,%=0
thrust@cuda/min_time:10.000/real_time                     500941 ns       500919 ns        27512 bytes/s=2.14345T/s error,%=0