Reference: https://doi.org/10.1016/j.cell.2019.05.050
Mu Y*, Bennett DV*, Rubinov M*, Narayan S, Yang CT, Tanimoto M, Mensh BD, Looger LL, Ahrens MB.
Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 2019 178:27-43.
Contact: Mika Rubinov, mika.rubinov at vanderbilt.edu
-
Apache Spark
-
Advanced Normalization Tools (ANTs)
-
h5py, matplotlib, nibabel, numpy, pandas, scipy, scikit-image, scikit-learn
- use pip to install:
pip install git+https://github.com/mikarubi/voluseg.git
-
Download an example dataset folder:
https://www.dropbox.com/sh/psrj9lusohj7epu/AAAbj8Jbb3o__pyKTTDxPvIKa?dl=0
-
Launch IPython with Spark.
-
Import package and load default parameters.
-
Set and save parameters (see
voluseg.parameter_dictionary??
for details). -
Execute code sequentially to perform cell detection.
-
The final output is in the file
cells0_clean.hdf5
in the output directory.
# set up
import os
import pprint
import voluseg
# check for updates
voluseg.update()
# set and save parameters
parameters0 = voluseg.parameter_dictionary()
parameters0['dir_ants'] = '/path/to/ants/bin/'
parameters0['dir_input'] = '/path/to/input/volumes/'
parameters0['dir_output'] = '/path/to/output/directory/'
parameters0['registration'] = 'high'
parameters0['diam_cell'] = 5.0
parameters0['f_volume'] = 2.0
voluseg.step0_process_parameters(parameters0)
# load and print parameters
filename_parameters = os.path.join(parameters0['dir_output'], 'parameters.pickle')
parameters = voluseg.load_parameters(filename_parameters)
pprint.pprint(parameters)
print("process volumes.")
voluseg.step1_process_volumes(parameters)
print("align volumes.")
voluseg.step2_align_volumes(parameters)
print("mask volumes.")
voluseg.step3_mask_volumes(parameters)
print("detect cells.")
voluseg.step4_detect_cells(parameters)
print("clean cells.")
voluseg.step5_clean_cells(parameters)
-
parameter dictionary.
-
parameters = voluseg.load_parameters('parameters.pickle')
-
required as input to individual pipeline steps.
-
directory of average volume plane images
-
brain mask superimposed on brain volume
-
can be used to assess goodness of brain masks
-
directory of affine transforms for individual volumes
-
can be used to assess movement of individual volumes
-
can be used to register volumes from a concurrent recording
-
background
: estimated background fluorescence -
block_valids
: indices of blocks used for segmentation -
block_xyz0/1
: min/max block xyz coordinates -
n_blocks
: total number of blocks -
n_voxels_cells
: approximate number of voxels in each cell -
thr_intensity
: brain-mask intensity threshold -
thr_probability
: brain-mask probability threshold -
volume_mean/mask/peak
: volume mean/mask/local peak intensity
-
mean_baseline
: baseline of detrended volume-mean timeseries -
mean_timeseries
: detrended volume-mean timeseries -
mean_timeseries_raw
: raw volume-mean timeseries -
timepoints
: indices of timepoints used for cell segmentation
-
background
: estimated background fluorescence -
cell_baseline
: computed cell baselines -
cell_timeseries
: detrended [+ optionally filtered] cell timeseries -
cell_timeseries_raw
: raw cell timeseries (direct output of segmentation) -
cell_weights
: cell spatial footprints (spatial NMF components) -
cell_x/y/z
: cell coordinates -
n/t
: number of cells/timepoints -
volume_id
: cell ids represented on a volume -
volume_weight
: cell spatial footprints represent on a volume -
x/y/z
: volume dimensions