RSoccer Gym is an open-source framework to study Reinforcement Learning for SSL and IEEE VSSS competition environment. The simulation is done by rSim and it is one of the requirements.
If you use this environment in your publication and want to cite it, utilize this BibTeX:
@misc{martins2021rsoccer,
title={rSoccer: A Framework for Studying Reinforcement Learning in Small and Very Small Size Robot Soccer},
author={Felipe B. Martins and Mateus G. Machado and Hansenclever F. Bassani and Pedro H. M. Braga and Edna S. Barros},
year={2021},
eprint={2106.12895},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Python 3.7+
- OpenAI Gym
- RSim >= v1.2.0
- Pyglet
- Protobuf
pip install rsoccer-gym
git clone https://github.com/robocin/rSoccer.git
cd rSoccer
pip install .
For editable installs, change last command to "pip install -e ."
.
IEEE VSSS | IEEE VSSS Multi-Agent | GoTo Ball | Static Defenders |
---|---|---|---|
Contested Possession | Dribbling | Pass Endurance | Pass Endurance MA |
---|---|---|---|
Environment Id | Observation Space | Action Space | Step limit |
---|---|---|---|
VSS-v0 | Box(40,) | Box(2,) | 1200 |
VSSMA-v0 | Box(3,40) | Box(3,2) | 1200 |
VSSGk-v0 | Box(40,) | Box(2,) | 1200 |
SSLGoToBall-v0 | Box(24,) | Box(3,) | 2400 |
SSLGoToBallShoot-v0 | Box(12,) | Box(5,) | 1200 |
SSLStaticDefenders-v0 | Box(24,) | Box(5,) | 1000 |
SSLDribbling-v0 | Box(21,) | Box(4,) | 4800 |
SSLContestedPossession-v0 | Box(14,) | Box(5,) | 1200 |
SSLPassEndurance-v0 | Box(18,) | Box(3,) | 1200 |
SSLPassEnduranceMA-v0 | Box(18,) | Box(2,3) | 1200 |
import numpy as np
from gym.spaces import Box
from rsoccer_gym.Entities import Ball, Frame, Robot
from rsoccer_gym.ssl.ssl_gym_base import SSLBaseEnv
class SSLExampleEnv(SSLBaseEnv):
def __init__(self):
field = 0 # SSL Division A Field
super().__init__(field_type=0, n_robots_blue=1,
n_robots_yellow=0, time_step=0.025)
n_obs = 4 # Ball x,y and Robot x, y
self.action_space = Box(low=-1, high=1, shape=(2, ))
self.observation_space = Box(low=-self.field.length/2,\
high=self.field.length/2,shape=(n_obs, ))
def _frame_to_observations(self):
ball, robot = self.frame.ball, self.frame.robots_blue[0]
return np.array([ball.x, ball.y, robot.x, robot.y])
def _get_commands(self, actions):
return [Robot(yellow=False, id=0,
v_x=actions[0], v_y=actions[1])]
def _calculate_reward_and_done(self):
if self.frame.ball.x > self.field.length / 2 \
and abs(self.frame.ball.y) < self.field.goal_width / 2:
reward, done = 1, True
else:
reward, done = 0, False
return reward, done
def _get_initial_positions_frame(self):
pos_frame: Frame = Frame()
pos_frame.ball = Ball(x=(self.field.length/2)\
- self.field.penalty_length, y=0.)
pos_frame.robots_blue[0] = Robot(x=0., y=0., theta=0,)
return pos_frame
import gym
import rsoccer_gym
# Using VSS Single Agent env
env = gym.make('VSS-v0')
env.reset()
# Run for 1 episode and print reward at the end
for i in range(1):
done = False
while not done:
# Step using random actions
action = env.action_space.sample()
next_state, reward, done, _ = env.step(action)
env.render()
print(reward)