/spSeudoMap

spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data

Primary LanguageJupyter Notebook

spSeudoMap

spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data
Fig  1

Optimal parameter choices

Number of marker genes per cluster: 40 (>20)
m/k ratio = 2 (> 1)
pseudo_frac_m = average fraction of negative non-sorted population (literature evidence or cell sorting experiment)
pseudo_frac_std = 0.1 (> 0.05)
Number of pseudospots = 5 to 10 times the number of real spots (20,000~40,000 per Visium slide)
Number of sampled cells in a pseudospot (virtual mixture of single-cell data) = 8 (brain), 10 (breast cancer)
Iteration number = 3,000
Mini-batch size = 512
Loss weights between source and domain classifier (alpha) = 0.6
Learning rate = 0.001 * alpha_lr = 0.005

Code Example

Python example: spSeudoMap_example.ipynb
R example: Refer to /vignettes/introduction.Rmd

Data Example

spatial data: 'V1_Adult_Mouse_Brain_Coronal_Section_1' from 10X Genomics Repository

Python function for spSeudoMap (pred_cellf_spSeudoMap)

Install conda environment and add kernel (jupyter)

conda create -n spSeudoMap python=3.8
conda activate spSeudoMap  
pip install git+https://github.com/bsungwoo/spSeudoMap.git  
python -m ipykernel install --user --name spSeudoMap --display-name spSeudoMap  

Function and main parameters

from spSeudoMap.pred_cellf_spSeudoMap import pred_cellf_spSeudoMap  
adata_sp = pred_cellf_spSeudoMap(adata_sp=None, adata_sc=None, count_from_raw=False,   
                                 gpu=True, celltype='cluster', num_markers=40,  
                                 mixture_mode='pseudotype', seed_num=0,  
                                 mk_ratio_fix=False, mk_ratio=2, pseudo_num_genes=40,  
                                 pseudo_frac_m=0.5, pseudo_frac_std=0.1, num_top_genes=20,  
                                 nmix=10, npseudo=20000, alpha=0.6, alpha_lr=5, emb_dim=64, 
                                 batch_size=512, n_iterations=3000, init_train_epoch=10, 
                                 outdir='./output', return_format='anndata')  

(1) adata_sp: spatial data (AnnData object) with raw count matrix to be used in predicting cell fraction (default: None)
(2) adata_sc: single-cell data (AnnData object) with raw count matrix to be used in making pseudospots (default: None)
(3) count_from_raw: whether to extract count matrix frow .raw of AnnData (default: False)
-> non-normalized raw count matrix should be contained in the AnnData .raw file
-> if False, then utilize the count matrices saved in adata_sp and adata_sc directly
(4) gpu: check whether to use gpu (True) or not (False) (default = True)
(5) celltype: column name for single-cell annotation data in .obs (default: 'celltype')
(6) num_markers: number of selected marker genes in each celltype (default = 40)
(7) mixture_mode: mode of the pseudospot generation ('default': same as CellDART, 'pseudotype': assuming exclusive cell type in spatial data)
(8) seed_num: seed to be used in random sampling (default = 0)
(9) mk_ratio_fix: whether to fix the mk_ratio when selecting the pseudotype markers (default = True)
(10) mk_ratio: ratio of number of single-cell markers to virtual pseudotype markers (default = 2)
(11) pseudo_frac_m: average of presumed fraction of the pseudotype (cell types exclusively present in spatial data) across all spatial spots (default = 0.5)
-> determined by cell sorting study or by literature based evidence that enables speculation of average negative non-sorted cell fraction in the tissue
(12) pseudo_frac_std: standard deviation of the distribution of presumed pseudotype fraction across all spatial spots (default = 0.1)
(13) num_top_genes: number of top genes having highest log fold change between spatial and single-cell normalized pseudobulk counts (spatial/single-cell) (default = 20)
(14) nmix: sampling number of cells in pseudospot (default = 10)
(15) npseudo: a total number of pseudospots (default = 20,000); approximately 5~10 times the number of pseudospots

Training parameters

(1) alpha: loss weights of the domain classifier to the source classifier (default = 0.6)
(2) alpha_lr: learning rate for the domain classifier (alpha_lr*0.001, default = 5)
(3) emb_dim: output size of dimensions for feature extractor (default = 64)
(4) batch_size: minibatch size for pseudospots and spatial data during the training (default = 512)
(5) n_iterations: iteration number for the adversarial learning (default = 3,000)
(6) init_train_epoch: iteration number for the pre-training process (default = 10)
(7) outdir: the directory to save output files (models and results)
(8) return_format: whether to return spatial AnnData file with predicted cell fraction in .obs (default: False)

R wrap function for spSeudoMap (spSeudoMap::pred_cellf_spSeudoMap)

devtools::install_github("bsungwoo/spSeudoMap", build_vignettes = T, force = T)  
library(spSeudoMap)  
help(pred_cellf_spSeudoMap) # Explanation for the parameters and short examples  
browseVignettes("spSeudoMap")  # Browse for the vignettes (/vignettes/introduction.Rmd)  

Installation of virtual or conda environment

Linux distributions: The environment will be automatically installed by running the function
Windows: Install conda environment first and then run the function with env.select = 'conda' and python.install=F

Function and additional parameters

Using conda environment (environment will be automatically installed in Linux distributions)
If using Windows, then install conda environment first and then run the function below with python.install = F
pseudo_frac_m <- 0.5 (average presumed pseudotype fraction in the tissue)
npseudo <- dim(sp_data)[2]*5
sp_data_cellf <- pred_cellf_spSeudoMap(sp_data, sc_data,
                                       outdir=output_folder_name,
                                       sp_subset=F, spot.cluster.name='seurat_clusters',
                                       spot.cluster.of.interest=NULL,
                                       env.select='conda', python.install=T,
                                       python_path=NULL, env.name='spSeudoMap',
                                       gpu=TRUE, metadata_celltype='annotation_1',
                                       num_markers=40, mixture_mode='pseudotype',
                                       seed_num=0,
                                       mk_ratio_fix=T, mk_ratio=4,
                                       pseudo_frac_m=pseudo_frac_m, pseudo_frac_std=0.1,
                                       nmix=8, npseudo=nspeudo, alpha=0.6, alpha_lr=5,
                                       emb_dim=64, batch_size=512, n_iterations=3000, init_train_epoch=10)
 Using virtual environment (environment will be automatically installed in Linux distributions)
 Not recommended for Windows
 pseudo_frac_m <- 0.5 (average presumed pseudotype fraction in the tissue)
 npseudo <- dim(sp_data)[2]*5
 sp_data_cellf <- pred_cellf_spSeudoMap(sp_data, sc_data,
                                        outdir=output_folder_name,
                                        sp_subset=F, spot.cluster.name='seurat_clusters',
                                        spot.cluster.of.interest=NULL,
                                        env.select='virtual', python.install=T,
                                        python_path=NULL, env.name='spSeudoMap',
                                        gpu=TRUE, metadata_celltype='annotation_1',
                                        num_markers=40, mixture_mode='pseudotype',
                                        seed_num=0,
                                        mk_ratio_fix=T, mk_ratio=4,
                                        pseudo_frac_m=pseudo_frac_m, pseudo_frac_std=0.1,
                                        nmix=8, npseudo=nspeudo, alpha=0.6, alpha_lr=5,
                                        emb_dim=64, batch_size=512, n_iterations=3000, init_train_epoch=10)

(1) outdir: the directory to save output files (models and results) (default = '.')
(2) sp_subset: whether to subset spatial data and calculate for specific spot cluster (default = FALSE)
(3) spot.cluster.name: group name of the cluster used for subsetting spatial data (default = 'seurat_clusters')
(4) spot.cluster.of.interest: name of each spot clusters to be used (default = NULL)
(5) env.select: select between using reticulate virtual environment or conda environment (default = 'conda')
-> either of the selection will search the already installed environment
-> if environment is not found, then it will automatically install the new environment
(6) python.install: whether to automatically install python version 3.7.12 (default = F)
-> For Windows, set python.install = F
(7) python_path: path for the python 3.7.12 (default = NULL)
(8) env.name: name of the virtual or conda environment to use for the analysis (default = 'spSeudoMap')
(9) metadata_celltype: column name for single-cell annotation data in metadata (default = 'celltype')

Potential errors when installing new conda environment by R wrap function (env.select='conda')

GLIBCXX_3.4.26 should be already installed
Check if it is installed: strings /usr/lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX
reference: https://stackoverflow.com/questions/63190229/glibcxx-3-4-26-not-found-running-cross-complied-program-on-beaglebone

sudo apt install wget gcc-8 unzip libssl1.0.0 software-properties-common  
sudo add-apt-repository ppa:ubuntu-toolchain-r/test  
sudo apt-get install --only-upgrade libstdc++6