/MbLS

Code of our method MbLS (Margin-based Label Smoothing) for network calibration. To Appear at CVPR 2022. Paper : https://arxiv.org/abs/2111.15430

Primary LanguagePythonMIT LicenseMIT

MbLS : The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration

Bingyuan Liu, Ismail Ben Ayed, Adrian Galdran, Jose Dolz

To Appear at CVPR 2022

[arXiv][website] [BibTeX]


Table of contents

Install

[option] create a new virtual env

conda create -n mbls python=3.8.10

It's recommended to install torch and torchvision tailored to your environment in advance. The torch versions I have tested are 1.10.0+cu111 and 1.7.1+cu110.

pip install -e .

The required libraies are already included in steup.py.

Data preparation

For CIFAR-10, our code can automatically download the data samples. For the others (Tiny-Imagenet, CUB-200 and VOC 2012), please refer to the official cites for downloading the datasets.

Important Note : Before you run the code, please add the absolute path of the data directory for the related data configs in configs/data. Or you could pass it in the running commands.

Usage

Training arguments

python tools/train_net.py --help

train_net is powered by Hydra.

== Configuration groups ==
Compose your configuration from those groups (group=option)

data: cifar10, cub, newgroups, tiny_imagenet, voc
loss: ce, focal, focal_adaptive, logit_margin, ls, mmce, penalty_ent
model: deeplabv3, global_pooling, resnet101, resnet101_cifar, resnet101_tiny, resnet110, resnet110_cifar, resnet34, resnet34_cifar, resnet34_tiny, resnet50, resnet50_cifar, resnet50_tiny
optim: adam, sgd
scheduler: multi_step, plateau, step
wandb: my


== Config ==
Override anything in the config (foo.bar=value)

data:
  name: cifar10
  data_root: DATA_PATH
  batch_size: 128
  object:
    trainval:
      _target_: calibrate.data.cifar10.get_train_valid_loader
      batch_size: ${data.batch_size}
      augment: true
      random_seed: ${seed}
      shuffle: true
      num_workers: 4
      pin_memory: true
      data_dir: ${data.data_root}
    test:
      _target_: calibrate.data.cifar10.get_test_loader
      batch_size: ${data.batch_size}
      shuffle: false
      num_workers: 4
      pin_memory: true
      data_dir: ${data.data_root}
model:
  name: resnet50
  num_classes: 10
  pretrained: true
  has_dropout: false
  object:
    _target_: calibrate.net.resnet.build_resnet
    encoder_name: ${model.name}
    num_classes: ${model.num_classes}
    pretrained: ${model.pretrained}
    has_dropout: ${model.has_dropout}
loss:
  name: ce
  ignore_index: -100
  object:
    _target_: torch.nn.CrossEntropyLoss
    ignore_index: ${loss.ignore_index}
    reduction: mean
optim:
  name: sgd
  lr: 0.1
  momentum: 0.9
  weight_decay: 0.0005
  nesterov: false
  object:
    _target_: torch.optim.SGD
    lr: ${optim.lr}
    momentum: ${optim.momentum}
    weight_decay: ${optim.weight_decay}
    nesterov: ${optim.nesterov}
scheduler:
  name: multi_step
  milestones:
  - 150
  - 250
  gamma: 0.1
  object:
    _target_: torch.optim.lr_scheduler.MultiStepLR
    milestones: ${scheduler.milestones}
    gamma: ${scheduler.gamma}
    verbose: true
wandb:
  enable: false
  project: ''
  entity: ''
  tags: ''
task: cv
device: cuda:0
seed: 1
log_period: 10
train:
  clip_grad_norm: true
  max_epoch: 200
  resume: false
  keep_checkpoint_num: 1
  keep_checkpoint_interval: 0
calibrate:
  num_bins: 15
  visualize: false
test:
  checkpoint: ''
  save_logits: false


Powered by Hydra (https://hydra.cc)
Use --hydra-help to view Hydra specific help

Traing examples

Ours :

python tools/train_net.py \
    log_period=100 \
    data=tiny_imagenet \
    data.data_root=/home/bliu/work/Data/tiny-imagenet-200 \
    model=resnet50_tiny model.num_classes=200 \
    loss=logit_margin loss.margin=10.0 loss.alpha=0.1 \
    optim=sgd optim.lr=0.1 optim.momentum=0.9 \
    scheduler=multi_step scheduler.milestones="[40, 60]" \
    train.max_epoch=100

Cross entropy (CE) :

python tools/train_net.py \
    log_period=100 \
    data=tiny_imagenet \
    data.data_root=/home/bliu/work/Data/tiny-imagenet-200 \
    model=resnet50_tiny model.num_classes=200 \
    loss=ce \
    optim=sgd optim.lr=0.1 optim.momentum=0.9 \
    scheduler=multi_step scheduler.milestones="[40, 60]" \
    train.max_epoch=100

Label smoothing (LS) :

python tools/train_net.py \
    log_period=100 \
    data=tiny_imagenet \
    data.data_root=/home/bliu/work/Data/tiny-imagenet-200 \
    model=resnet50_tiny model.num_classes=200 \
    loss=ls \
    optim=sgd optim.lr=0.1 optim.momentum=0.9 \
    scheduler=multi_step scheduler.milestones="[40, 60]" \
    train.max_epoch=100

Testing examples

Testing with trained models

Plugin MbLS into your pipeline

It is straightfoward to include the self-contained module logit_margin_l1 in your framework.

The core idea is simply a few lines of code:

loss_ce = self.cross_entropy(inputs, targets)
# get logit distance
diff = self.get_diff(inputs)
# add linear penalty where logit distances are larger than the margin
loss_margin = F.relu(diff-self.margin).mean()
loss = loss_ce + self.alpha * loss_margin

Support for extension or follow-up works

Besides the implementation of our paper, this library could support follow-up works on model calibration with the following features:

  • Calibration evaluator, e.g. ECE and AECE
  • Reliability diagram
  • Experiments tracking with wandb

More instructions will come soon. Please stay tuned! Thank you.

Citing MbLS

@inproceedings{liu2022mbls,
  title={The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration}, 
  author={Bingyuan Liu and Ismail Ben Ayed and Adrian Galdran and Jose Dolz},
  booktitle = {CVPR},
  year={2022},
}